Testing for rational bubbles in a co-explosive vector autoregression1

Tom Engsted2 & Bent Nielsen3

18 November 2011

Summary: Asset bubbles can be described through the rational bubble solution of the standard stock price model linking stock prices and dividends. We show how the hypothesis of a rational bubble can be tested in the context of a bivariate coexplosive vector autoregression. The methodology is illustrated using US stock prices and dividends for the period 1974-2000.

Keywords: Rational bubbles, Explosiveness and co-explosiveness, Cointegration, Vector autoregression, Likelihood ratio tests.

1 Introduction

Asset bubbles can be described as an equilibrium phenomenon under rational expectations and informationally efficient capital markets. We show how the hypothesis of a rational bubble can be tested in the context of a coexplosive and cointegrated vector autoregression. The proposed procedure is an extension to the tests for the present value model for stock prices without bubbles in the context of the cointegrated vector autoregression, see Campbell and Shiller (1987, 1988) and Johansen and Swensen (1999, 2004, 2011). The present work allows for bubbles and draws on the coexplosive analysis proposed by Nielsen (2010) and its application to stock prices by Engsted (2006).

The proposed procedure complements the econometric procedures available in the literature. Flood and Garber (1980) and Froot and Obstfeld (1991) were concerned with explosive bubbles which are either deterministic or deterministic functions of functionals. West (1987) and Diba and Grossman (1988) were concerned with testing the hypothesis of no bubbles. The West (1987) test is inconsistent according to West (1985) as a result of the explosiveness under the alternative. Our proposed testing procedure does not face such a problem because the model and the hypothesis

1Comments from the referees are gratefully acknowledged.

2CREATES, Department of Economics and Business, Aarhus University, DK-8000 Aarhus C. E-mail: tengsted@creates.au.dk. CREATES is funded by the Danish National Research Foundation.

3Nuffield College, Oxford OX1 1NF, UK. E-mail: bent.nielsen@nuffield.ox.ac.uk. Financial support from ESRC grant RES-000-27-0179 and the Institute for New Economic Thinking at the Oxford Martin School is gratefully acknowledged.
explicitly include explosive features. The methodology is illustrated using US stock
prices and dividends for the period 1974-2000.

2 The model, restrictions, interpretation and estimation

The economic model for stock price determination is formulated. As this is a partial
model it is then embedded in a vector autoregressive framework. It is shown how the
stock price model can be formulated as a testable hypothesis.

2.1 The model for stock price determination

The standard model for stock price determination involves real stock prices P_t and
dividends D_t. The model is given by the equation

$$P_t = \frac{1}{1 + R} \mathcal{E}_t(1 + P_{t+1} + D_{t+1}), \quad (2.1)$$

where $R > 0$ is the expected one-period return on the stock, which is assumed con-
stant. More general models allowing for time-varying expected returns are common in
empirical finance, see for instance Cochrane (2008), but since the previous empirical
bubble literature has assumed R constant, models with time-varying expected returns
will not be pursued here. As it stands the model is partial in that the conditional
expectations operator \mathcal{E}_t is left unspecified. Later a complete model is presented in
which \mathcal{E}_t is precisely defined. The equation (2.1) can be reformulated as

$$\mathcal{E}_{t-1} M_t = 0 \quad \text{where} \quad M_t = P_t + D_t - (1 + R) P_{t-1}. \quad (2.2)$$

In other words, M_t is a martingale difference, which is a version of the efficient market
hypothesis, see Leroy (1989).

Considerable attention has been given to the situation in which P_t and D_t have
random walk features and the “spread” $S_t = P_t - D_t/R$ is a cointegrating relation,
see e.g. Campbell and Shiller (1987, 1988) and Johansen and Swensen (1999, 2004).
Often cointegration refers to reduction of random walk behaviour to stationarity. In
the present context it is useful to use the term cointegration simply for removal of
random walk behaviour so that S_t remains a cointegrating relation. To see this add
and subtract $\{(1 + R)/R\} \Delta_1 D_t$ to M_t, where $\Delta_1 D_t = D_t - D_{t-1}$, to get

$$M_t = \Delta_{1+R} S_t + (1 + R^{-1}) \Delta_1 D_t, \quad (2.3)$$

where $\Delta_{1+R} S_t \equiv S_t - (1 + R) S_{t-1}$. The relation shows that if $\Delta_1 D_t$ is stationary
then $\Delta_{1+R} S_t$ is also stationary since M_t is assumed a martingale difference. Since
the operator Δ_{1+R} removes exponential features but does not reduce random walks
to stationarity for \(R \neq 0 \) then \(S_t \) could be explosive, but must be free of unit roots even if \(P_t \) and \(D_t \) have random walk features. Hence \(S_t \) is a cointegrating relation.

A consequence of the stock price determination model is that the “spread” can be written as a present value of expected future dividends:

\[
S_t = P_t - \frac{1}{R} D_t = \frac{1 + R}{R} \sum_{r=1}^{\infty} \mathcal{E}_t(\Delta_1 D_{t+r}) \left(\frac{1}{1 + R} \right)^r + bB_t. \tag{2.4}
\]

for \(b \in \mathbb{R} \) and where \(B_t \) obeys, see Diba and Grossman (1988) and Engsted (2006),

\[
B_{t+1} = (1 + R)B_t + \xi_{t+1}, \tag{2.5}
\]

where \(\mathcal{E}_t \xi_{t+1} = 0 \). The variable \(B_t \) is called a rational bubble, the component of stock prices that reflects self-fulfilling rational expectations of future price increases independently of fundamentals \(\mathcal{E}_t D_{t+s} \). To see that (2.4) and (2.5) solve (2.1), solve for \(P_t \), and insert the expression on both sides of (2.1). If \(\Delta_1 D_t \) is stationary then the present value component on the right hand side of (2.4) is well-defined. In other words, if \(D_t \) is integrated of order one then the “spread” \(S_t \) is a cointegrating relation in that it has no unit roots. At the same time \(S_t \) evolves around the explosive component \(B_t \). These features can be described through the co-explosive model.

2.2 The vector autoregressive model

The partial economic model (2.1) is completed by assuming that \(X_t = (P_t, D_t) \) is vector autoregressive in line with Campbell and Shiller (1988) and Johansen and Swensen (1999, 2004, 2011). The vector autoregressive model of order \(k \) is given by

\[
X_t = \sum_{j=1}^{k} A_j X_{t-j} + \mu + \varepsilon_t, \tag{2.6}
\]

where \(A_j \in \mathbb{R}^{2 \times 2} \) and \(\mu \in \mathbb{R}^2 \). The errors, \(\varepsilon_t \), are independent \(\mathcal{N}_2(0, \Omega) \)-distributed, or more generally a martingale difference sequence. The completed model implies a natural filtration \(\mathcal{F}_t = \sigma(X_s; 1 \leq s \leq t) \) and an expectations operator \(\mathbb{E} \). Within this model the efficient marked hypothesis amounts to \(\mathbb{E}(M_t | \mathcal{F}_{t-1}) = 0 \).

2.3 The coexplosive model and its interpretation

The coexplosive model arises as a restriction to the vector autoregressive model (2.6). It allows for common random walk trend and a common explosive stochastic component with explosive root \(\rho > 1 \). To facilitate the analysis the model is reparametrised in equilibrium correction form, see Nielsen (2010), as

\[
\Delta_1 \Delta_{\rho} X_t = \Pi_1 \Delta_{\rho} X_{t-1} + \Pi_{\rho} \Delta_1 X_{t-1} + \sum_{j=1}^{k-2} \Phi_j \Delta_1 \Delta_{\rho} X_{t-j} + \mu + \varepsilon_t, \tag{2.7}
\]
where $\Delta_\rho X_t = X_t - \rho X_{t-1}$ and $\Delta_1 X_t = X_t - X_{t-1}$. The parameters satisfy $\Pi_1, \Pi_\rho, \Phi_j \in \mathbb{R}^{2 \times 2}$, $\mu \in \mathbb{R}^2$, and $\rho \in \mathbb{R}$.

The additional assumptions that X_t has one unit root and one explosive root are accommodated by reduced rank restrictions so

$$H_1 : \quad (\Pi_1, \mu) = \alpha_1 (\beta_1', \zeta_1), \quad \Pi_\rho = \alpha_\rho \beta_\rho',$$

where $\alpha_1, \beta_1, \alpha_\rho, \beta_\rho \in \mathbb{R}^2$, $\zeta_1 \in \mathbb{R}$. The model M restricted by H_1 is denoted M_1.

The process can be interpreted through its Granger-Johansen representation. Such a representation was given in Nielsen (2010, Theorem 1). This shows that $\beta_1' \Delta_\rho X_t$, $\beta_\rho' \Delta_1 X_t$ and $\Delta_1 \Delta_\rho X_t$ can be given a stationary distribution. The vectors β_1 and β_ρ are therefore referred to as the cointegrating vector and the co-explosive vector. In the context of the stock price model it is useful to restate the result with detailed expressions for the initial values of the process which will be used for the computation of Figure 1. For a matrix α with full column rank α_\perp denotes an orthogonal complement of a matrix α so $\alpha_\perp^\top \alpha = 0$ and (α, α_\perp) is invertible while $\overline{\alpha} = \alpha (\alpha' \alpha)^{-1}$.

Assumption A Consider the model M and the hypothesis H_1. Suppose

(i) The vectors $\alpha_1, \beta_1, \alpha_\rho, \beta_\rho \in \mathbb{R}$ are non-zero;
(ii) The nonstationary characteristic roots of X_t are at 1 or $\rho > 0$;
(iii) $\det(\alpha_\perp \Psi_1 \beta_\perp) \neq 0$ and $\det(\alpha_\perp \Psi_\rho \beta_\perp) \neq 0$ where

$$\Psi_1 = I_2 + \frac{\alpha_\rho \beta_\rho'}{\rho - 1} - \sum_{j=1}^{k-2} \Phi_j, \quad \Psi_\rho = I_2 + \frac{\alpha_1 \beta_1'}{1 - \rho} - \sum_{j=1}^{k-2} \rho^{-j} \Phi_j.$$

Theorem 2.1 Suppose Assumption A holds. Then it holds

$$X_t = \frac{1}{1 - \rho} C_1 (A_1 + \sum_{s=1}^t \varepsilon_s) + \frac{1}{1 - \rho} C_\rho \beta_\rho' \sum_{s=1}^t \rho^{-s} \varepsilon_s) + Y_t - \frac{\overline{\beta}_1 \zeta_1}{1 - \rho},$$

where Y_t is a stationary process. The impact matrices and initial values are\(^4\)

$$C_x \quad = \quad x \beta_x (\alpha_x \Psi_x \beta_x)^{-1} \alpha_x',
A_x \quad = \quad \Psi_x \Delta_y X_0 - \frac{\alpha_y \beta_y'}{y - x} \Delta_x X_0 + \sum_{j=1}^{k-2} \sum_{h=0}^{j-1} \Phi_j \Phi_h \Delta_x \Delta_y X_{t-h},$$

where (x, y) is $(1, \rho)$ or $(\rho, 1)$. The stationary process Y_t is given by $Y_t = \theta_t U_t$ where U_t has is zero mean stationary and is defined in terms of $\overline{X}_t = X_t - \overline{\beta}_1 \zeta_1 / (1 - \rho)$ as

$$U_{t-1} = \{(\beta_1' \Delta_\rho \overline{X}_{t-1})', (\beta_\rho' \Delta_1 \overline{X}_{t-1})', \Delta_1 \Delta_\rho \overline{X}_{t-1}, \ldots, \Delta_1 \Delta_\rho \overline{X}_{t-k+2})', \ldots \}.$$

\(^4\)The definition of C_x includes a factor x which is erroneously left out in Nielsen (2010).
while the parameter θ_U is defined through

$$\theta_U = (G_{1,\rho}, G_{\rho,1}, H_{1,\rho,1} + H_{\rho,1,1}, \ldots, H_{1,\rho,k-2} + H_{\rho,1,k-2}),$$

$$G_{x,y} = -\frac{C_y\alpha_x}{(y-x)^2} - \frac{C_x\Psi_x}{x-y} + \frac{x\beta_x}{x-y}, \quad H_{x,y,n} = \frac{C_x x^{n-1} k-2}{y-x} \sum_{j=n} \Phi_j x^{-j}.$$

The cointegration rank, that is the rank of the matrix Π_1, can be determined with Johansen’s likelihood test based procedure. In particular, the likelihood is maximised using reduced rank regression of $\Delta_1 X_t$ on $(X_{t-1}', 1)'$ correcting for $\Delta_1 X_{t-1}, \ldots, \Delta_1 X_{t-k+1}$; see also Nielsen (2010, §3.3) for a discussion.

2.4 Testing that dividends are non-explosive

In the stock price model the dividends are assumed to have stationary differences. In other words the dividends are non-explosive. This can be tested through the simple hypothesis on the coexplosive vector that

$$H_D : \quad \beta_\rho = (0, 1)'.'$$

Under the hypothesis H_D the model equation of M_1 reduces to

$$M_{1D} : \quad \Delta_1 \Delta_\rho X_t = \alpha_1 \beta_1' \Delta_\rho X_{t-1}^* + \alpha_\rho \Delta_1 D_{t-1} + \sum_{j=1}^{k-2} \Phi_j \Delta_1 \Delta_\rho X_{t-j} + \varepsilon_t, \quad (2.8)$$

where $\beta_1^* = (\beta_1', \zeta_1')'$ and $\Delta_\rho X_{t-1}^* = (\Delta_\rho X_{t-1}, 1)$. For a given value of ρ the likelihood is maximised by reduced rank regression of $\Delta_1 \Delta_\rho X_t$ on $\Delta_\rho X_{t-1}$ correcting for lagged dividend growth $\Delta_1 D_{t-1}$ and lagged differences $\Delta_1 \Delta_\rho X_{t-j}$; see Nielsen (2010, §3.3)].

2.5 Testing the bubble model

The bubble model imposes two restrictions on the model M_{1D}. The first restriction is that the “spread” $S_t = P_t - D_t/R$ is a cointegrating relation so that the coefficient R is linked to the explosive root through $\rho = 1 + R$. This gives the hypothesis

$$H_S : \quad \beta_1 = (1, -1/R)', \quad \text{where } R = \rho - 1. \quad (2.9)$$

The second restriction is the martingale restriction (2.2). To formulate this hypothesis pre-multiply the equation (2.8) by the vector $\iota' = (1, 1)$ to get

$$\Delta_1 \Delta_\rho (P_t + D_t) = \iota' \alpha_1 \Delta_\rho S_{t-1} + \iota' \alpha_\rho \Delta_1 D_{t-1} + \iota' \sum_{j=1}^{k-2} \Phi_j \Delta_1 \Delta_\rho X_{t-j} + \iota' \alpha_1 \zeta_1 + \iota' \varepsilon_t.$$
This equation reduces to the equation $M_t = t'\varepsilon_t$, which can be denoted $\varepsilon_{M,t}$, when

$$H_B: \quad t'\alpha_1 = -1, \quad t'\alpha_\rho = -(1 + R)^2/R, \quad t'\Phi_j = 0, \quad \zeta_1 = 0,$$

(2.10)

for $j = 1, \ldots, k$. The model M_t restricted by H_S and H_B is denoted M_{1DSB}.

It is convenient to reparametrise the restricted model M_{1DSB}. To deal with the correlation structure for the errors, let ω denote the population regression coefficient of $\varepsilon_{D,t} = (0, 1)\varepsilon_t$ on $\varepsilon_{M,t} = (1, 1)\varepsilon_t$ and rewrite the model in terms of the marginal equation for M_t and the conditional equation for ΔD_t so

$$M_{1DSB}: \quad M_t = \varepsilon_{M,t}, \quad \Delta D_t = \alpha_{1,D} \Delta \rho S_{t-1} + (\alpha_{\rho,D} + \rho) \Delta D_{t-1}$$

$$+ \sum_{j=1}^{k-2} \Phi_{j,D} \Delta \rho X_{t-j} + \omega M_t + \varepsilon_{D.M,t},$$

(2.11)

(2.12)

where the errors $\varepsilon_{M,t}$ and $\varepsilon_{D,M,t} = \varepsilon_{D,t} - \omega \varepsilon_{M,t}$ are uncorrelated. The likelihood implied by these equations is maximised through a profile argument using that for a known R the regressions (2.11) and (2.12) are unrelated. The likelihood is then maximised by maximising over R.

3 Asymptotic analysis

The proposal is to test the hypotheses H_1, H_D, H_S, H_B through a sequence of likelihood ratio test statistics. It is shown that these have standard distributions.

The result is proved under the assumption that the sequence of innovations ε_t is an \mathcal{F}_t-martingale difference sequence. This is in line with the stock price model in which the rational expectation essentially amounts to a martingale difference assumption. This is remarkable as the asymptotic distribution theory of the explosive root estimator itself relies on a normality assumption. Two additional conditions are needed.

Assumption B For some $\gamma > 2$ it holds $\sup \mathbb{E}\{(|\varepsilon_t'|^{2+\gamma}/2)\mid \mathcal{F}_{t-1}\} < \infty$ a.s.

Assumption C $\mathbb{E}(\varepsilon_t | \mathcal{F}_{t-1}) = \Omega$ a.s. where Ω is positive definite.

The purpose of Assumption B is to give a bound to the fluctuations of the paths while Assumption C makes the conditional variances time invariant. While allowing for a degree of temporal dependence each of the conditions rule out autoregressive conditional heteroscedasticity (ARCH).

A range of specification tests are available for the vector autoregression M in the presence of an explosive root. Nielsen (2006a,b) has shown that likelihood-based
procedures for lag-length determination apply as opposed to procedures based on the Yule-Walker equations. Engler and Nielsen (2009) show that plots of empirical quantiles of the residuals against normal quantiles are valid. Nielsen and Sohkanen (2011) show that cumulative sums of squares tests for constant variance of ε_t can be applied.

As a next step, the test for cointegration rank, that is the likelihood ratio test for H_1 within M, has standard critical values in the presence of an explosive root. This has previously been proved in the univariate case by Nielsen (2001) and for the model with a restricted linear trend by Nielsen (2010, Theorem 2).

Theorem 3.1 Suppose model M_1 and Assumptions A, B, C hold with $\gamma > 0$ only. Then $LR (M_1 | M)$ has the same limiting distribution as in Johansen (1995, §6),

$$LR (M_1 | M) \xrightarrow{D} \text{tr} \left\{ \int_0^1 dB_u F_u' \left(\int_0^1 F_u F_u' du \right)^{-1} \int_0^1 F_u dB_u' \right\},$$

where $F_u = (B_u, 1)'$ with B_u being a standard Brownian motion of dimension 1.

Thirdly, the likelihood ratio test statistic for H_D within M_1 is asymptotically χ^2. As this statistic is concerned exclusively with the explosive terms normality is required. Some discussion of the normality assumption is given in Nielsen (2010, §4.3) The argument is similar to the proof of Theorem 4 and Corollary 1 in that paper. For the formulation of the result define $\tau_\perp = \Psi \rho \beta$ and $\tau = (I_2 - \tau_\perp \tau_\perp')\alpha_\rho$.

Theorem 3.2 Suppose model M_{1D} with $\rho \geq \theta$ for some $\theta > 1$ and Assumptions A, B, C hold, and that $\tau' \varepsilon_t$ is independent $\mathcal{N}(0, \tau'\Omega\tau)$-distributed. Then $LR(M_{1D}|M_1)$ is asymptotically $\chi^2 (1)$.

Finally, the main result of this paper concerns the likelihood ratio test for the joint hypothesis H_S, H_B within the model M_{1D}. The test statistic is asymptotically $\chi^2 (2k)$. The hypotheses H_S and H_B link the cointegrating vector, the explosive root, the dynamic adjustment parameters and the intercept in a non-linear fashion and it is not immediately obvious that a χ^2 result should hold, but it actually does under martingale difference assumptions.

Theorem 3.3 Suppose model M_{1DSB} and Assumptions A, B, C are satisfied. Then the test statistic $LR(M_{1DSB}|M_{1D})$ is asymptotically $\chi^2 (2k)$.

The proof is given in the appendix. It is related to the analysis in Nielsen (2010). Because the model M_{1DSB} is analysed by regression the likelihood function can be analysed in a different way that gives rise to stronger results than in the above paper.
Indeed, a global consistency result can be formulated. In the asymptotic expansions the test statistic is found to be the sum of two asymptotically independent terms. The first statistic is mixed Gaussian and relates to the restrictions on the cointegration vectors. The analysis of the second term involves a central limit argument and relates to the restrictions on the adjustment vectors $\alpha_1, \alpha_\rho, \Phi_j$.

The estimators in the model M_{1DSB} are asymptotically normal. The estimator for R converges at an exponential rate $(1 + R)^T$ while the adjustment coefficients are standard $T^{1/2}$-consistent. Theorem B.11 in the appendix gives a precise statement.

The proposed method is applied to the annual US stock price and dividend series tabulated by Robert J. Shiller and available at www.robertshiller.com. Here, P_t is the real S&P Composite stock price index at January at year t, and D_t denotes the associated real dividends paid during year $t - 1$. The sub-sample 1974-2000 is considered so as to focus on the recent "bubble period" that ended in 2000 and - according to Shiller (2000) - began to build up from the beginning of the 1980s, shortly after the 1974 collapse. The software OxMetrics by Doornik and Hendry (2001) is used for the analysis.

Figure 1(a, c) shows dividend growth $\Delta_1 D_t$ and prices P_t. An exponential pattern
is seen for P_t while $\Delta_1 D_t$ appears not to have exponential growth. The initial model is a vector autoregression (2.6) with two lags. The characteristic roots are 1.258, 0.675, 0.354, and 0.295, thus indicating an explosive root in the system.

Table 1 reports specification tests which do not provide evidence against the initial model. The validity of the autocorrelation tests in the explosive context are established in Nielsen (2006a,b). We believe the reported tests for normality and no autoregressive conditional heteroscedasticity are valid, although proofs have not be published. Quantile-Quantile plots and recursive cumulated sums of squares plots, not shown here, do also not provide evidence against the model. The validity of those plots is shown in Engler and Nielsen (2009) and Nielsen and Sohkanen (2011).

Table 2 reports cointegration rank tests. The standard Dickey-Fuller distribution of Johansen (1995, Table 15.2) is used even in the presence of an explosive root due to Theorem 3.1. The tests point to a rank of unity, although the rejection of the hypothesis of no cointegration is marginal. Imposing a unit root changes the largest root slightly to 1.223. The estimated cointegration vector is $\beta_1 = (1, 29.296)$. As seen, the coefficient to D_t has the ‘wrong’ sign implying a negative expected return. However, inspection of the likelihood function reveals that it is extremely flat around the optimum; and tests of the hypotheses that β_1 is (1, 0) or (0, 1) cannot be rejected at the 5% level. Thus, the data are not very informative about the value of the expected return parameter R via the cointegrating vector β_1.

Table 3 reports the various tests associated with the bubble hypothesis. First, the test for the hypothesis H_D that dividends are non-explosive against M_1 is asymptotically χ^2 due to Theorem 3.2 and gives a p-value of 0.99 while $\hat{p} = 1.224$ is nearly unchanged. This confirms the impression from Figure 1 that the explosive root in the

Table 1: Specification tests for the unrestricted vector autoregression.

<table>
<thead>
<tr>
<th>Test</th>
<th>P_t</th>
<th>D_t</th>
<th>Test</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi^2_{\text{normality}} (2)$</td>
<td>0.6</td>
<td>1.7</td>
<td>$\chi^2_{\text{normality}} (4)$</td>
<td>2.0</td>
</tr>
<tr>
<td>$F_{ar,1-2} (2, 18)$</td>
<td>0.1</td>
<td>1.4</td>
<td>$F_{ar,1-2} (8, 30)$</td>
<td>1.4</td>
</tr>
<tr>
<td>$F_{arch,1-1} (1, 23)$</td>
<td>0.3</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Cointegration rank determination with constant restricted to cointegration space. Critical values based on Johansen (1995, Table 15.2) and Doornik (1998).
system belongs to P_t and not D_t. Secondly, the test for the joint bubble hypothesis H_S, H_B against M_{1D} is asymptotically χ^2 due to Theorem 3.3 and gives a p-value of 0.12 when tested against M_{1D}. Since the latter test has 4 degrees of freedom and a relatively low p-value it is of interest to evaluate various intermediate hypotheses noting that a χ^2-distribution theory has not been formally established.

The first of the intermediate hypotheses is the H_S hypothesis that $\beta_1 = (1, -1/R)$ with $\rho = 1 + R$. The p-value is 0.57 when tested against M_{1D} and $\hat{\rho} = 1.263$, which implies $R = 26.1\%$, clearly not an economically reasonable estimate of the expected annual return. Testing the final hypothesis, H_B, gives a p-value of 0.07 if tested against model M_{1DS}, and a p-value of 0.19 if tested against model M_1. The decision not to reject the hypothesis H_B is marginal against M_{1DS} albeit more convincing against M_1. The problem arises from the constant. Imposing only $(1,1)\alpha_1 = -1$ and $(1,1)\alpha_\rho = -(1 + R)^2/R$ but leaving the level parameter ζ_1 unconstrained gives a likelihood of 104.65, so a test statistic of 2.20 (p-value: 0.33) against M_{1DS}. Thus the test statistic for M_{1DSB} against this intermediate hypothesis is 4.89 (p-value: 0.027).

Proceeding with the model M_{1DSB} we note that the estimate of the explosive root now becomes $\hat{\rho} = 1.156$ (standard error: 0.023) implying $\hat{R} = 15.6\%$ which is lower than before but still quite high. Here the standard error is computed from the second derivative of the profile likelihood and is valid under the normality assumption which is not rejected. The final estimated model under M_{1DSB} is

$$M_t = \hat{\mu}_{M_t}, \quad \text{sdv} = 0.357,$$
$$\Delta_1 D_t = \begin{pmatrix} 0.0032 \Delta_\rho S_{t-1} + 0.51 \Delta_1 D_{t-1} - 0.0021 M_t + \hat{\epsilon}_{D-M,t} \end{pmatrix}, \quad \text{sdv} = 0.00295.$$

Figure 1(a, b) shows graphs of the fitted values of $\Delta_1 D_t$ and M_t. Panel (c) shows the actual prices P_t and the explosive trend for P_t computed using the formula $(\rho - 1)^{-1}(1,0)C_\rho \rho^j(A_\rho + \sum_{s=1}^t \rho - \epsilon_s)$ given in Theorem 2.1. This explosive trend contributes with a substantial part of the movements in prices over time consistent with the bubble model. Panel (d) compares the non-explosive part of P_t, that

<table>
<thead>
<tr>
<th>Model</th>
<th>Hypothesis</th>
<th>Likelihood</th>
<th>Test statistic</th>
<th>d.f.</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>$H_1, r = 1$</td>
<td>105.91</td>
<td>$LR(H_D</td>
<td>M_1) = 0.0002$</td>
<td>1</td>
</tr>
<tr>
<td>M_{1D}</td>
<td>H_1, H_D</td>
<td>105.91</td>
<td>$LR(H_S</td>
<td>M_{1D}) = 0.32$</td>
<td>1</td>
</tr>
<tr>
<td>M_{1DS}</td>
<td>H_1, H_D, H_S</td>
<td>105.75</td>
<td>$LR(H_D,H_S</td>
<td>M_1) = 0.32$</td>
<td>2</td>
</tr>
<tr>
<td>M_{1DSB}</td>
<td>H_1, H_D, H_S, H_B</td>
<td>102.20</td>
<td>$LR(H_D,H_S,H_B</td>
<td>M_1) = 10.91$</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 3: Tests of the rational bubble restrictions.
is the difference between P_t and the explosive trend, with the random walk trend $(1 - \rho)^{-1}(1,0)C_1(A + \sum_{s=1}^t \delta_s)$, see Theorem 2.1.

The conclusion from the analysis is that real stock prices contain an explosive component, and the formal restrictions implied by the rational bubble model cannot be rejected, although the test for the bubble hypothesis itself, H_B against M_{1DS}, is marginal. The estimate of the expected return parameter R is rather high. It is found that the hypotheses that the spread is cointegrating and that P_t has no unit root are both consistent with the data. The data are simply not able to discriminate between these two hypotheses. From an economic point of view (c.f. Shiller, 2000), and looking at Figure 1, it is not unreasonable to consider prices as being bubble-driven with no connection at all to fundamental variables like dividends.

A Proof of Granger-Johansen representation

Proof of Theorem 2.1. Homogenous equation. Let $\tilde{X}_t = X_t + \beta_1' \zeta_t/(1 - \rho)$ so $\Delta_1 X_t = \Delta_1 \tilde{X}_t$ and $\Delta_P X_t = \Delta_P \tilde{X}_t + \beta_1' \zeta_t$. Since $\mu = \alpha_1 \zeta_t$ then $\mu + \alpha_1' \beta_1 \zeta_t = 0$. Insert this in (2.7) to see that \tilde{X}_t solves the

$$
\Delta_1 \Delta_P \tilde{X}_t = \alpha_1' \Delta_P \tilde{X}_{t-1} + \alpha_1' \beta_1' \Delta_1 \tilde{X}_{t-1} + \sum_{j=1}^{k-2} \Phi_j \Delta_1 \Delta_P \tilde{X}_{t-j} + \varepsilon_t. \tag{A.1}
$$

This homogenous equation is studied in Theorem 1 of Nielsen (2010) which gives therefore gives the desired representation for X_t apart from the explicit expressions for the terms A_1, A_p, Y_t.

Decomposition. To find the expressions for A_1, A_p, Y_t decompose

$$
\tilde{X}_t = \frac{y \Delta_x \tilde{X}_t - x \Delta_y \tilde{X}_t}{y - x} = \frac{y (\beta_{y,1} \beta_{x,1}' + \beta_{y,1} \beta_{x,1}') \Delta_y \tilde{X}_t}{y - x} + \frac{x (\beta_{x,1} \beta_{x,1}' + \beta_{x,1} \beta_{x,1}') \Delta_y \tilde{X}_t}{x - y}. \tag{A.2}
$$

It will be shown below that

$$
x \beta_{x,1} \beta_{x,1}' \Delta_y \tilde{X}_t = C_x x^t (A_x + \sum_{s=1}^t x^{-s} \varepsilon_s) + C_x \frac{\alpha_y \beta_y'}{y - x} \Delta_x \tilde{X}_t - C_x \Phi \beta_x' \Delta_y \tilde{X}_t - \frac{k-2}{k-2} \sum_{j=0}^{k-2} \Phi_j \sum_{h=0}^j x^{h-j} \Delta_x \Delta_y \tilde{X}_{t-h}. \tag{A.3}
$$

Inserting (A.3) into (A.2) and keeping track of the terms gives the expressions for A_1, A_p, Y_t.

The identity (A.3). Note the identities

$$
(y - x) \Delta_x \tilde{X}_{s-1} = \Delta_x^2 \tilde{X}_s - \Delta_x \Delta_y \tilde{X}_s,
$$

$$
\sum_{h=0}^{j-1} x^h \Delta_x^2 \Delta_y \tilde{X}_{s-h} = \Delta_x \Delta_y \tilde{X}_s - x^j \Delta_x \Delta_y \tilde{X}_{s-j}.
$$
Insert these in the homogeneous model equation and pre-multiply by $\alpha'_{x \perp}$ to get

$$
\alpha'_{x \perp} \Delta_x \Delta_y \tilde{X}_s = \alpha'_{x \perp} \varepsilon_s + (y - x)^{-1} \alpha'_{x \perp} \alpha_y \beta'_{y} (\Delta_x^2 \tilde{X}_s - \Delta_x \Delta_y \tilde{X}_s) + \alpha'_{x \perp} \sum_{j=1}^{k-2} x^{-j} \Phi_j (\Delta_x \Delta_y \tilde{X}_s - \sum_{h=0}^{j-1} x^h \Delta_x^2 \Delta_y \tilde{X}_{s-h})
$$

Gather $\Delta_x \Delta_y \tilde{X}_s$-terms and use $\Psi_x = I_p + (y - x)^{-1} \alpha_y \beta'_{y} - \sum_{j=1}^{k-2} x^{-j} \Phi_j$ to get

$$
\alpha'_{x \perp} \Psi_x \Delta_x \Delta_y \tilde{X}_s = \alpha'_{x \perp} \varepsilon_s + \alpha'_{x \perp} \frac{\alpha_y \beta'_{y}}{y - x} \Delta_x^2 \tilde{X}_s - \alpha'_{x \perp} \sum_{j=1}^{k-2} \Phi_j \sum_{h=0}^{j-1} x^{h-j} \Delta_x^2 \Delta_y \tilde{X}_{s-h}.
$$

Multiply with x^{-s} and sum over s and multiply with x^t to get

$$
\alpha'_{x \perp} \Psi_x \left(\Delta_y \tilde{X}_t - x^t \Delta_y \tilde{X}_0 \right) = \alpha'_{x \perp} \sum_{s=1}^{t} x^{t-s} \varepsilon_s + \alpha'_{x \perp} \frac{\alpha_y \beta'_{y}}{y - x} (\Delta_x \tilde{X}_t - x^t \Delta_x \tilde{X}_0) - \alpha'_{x \perp} \sum_{j=1}^{k-2} \Phi_j \sum_{h=0}^{j-1} x^{h-j} (\Delta_x \Delta_y \tilde{X}_{t-h} - x^t \Delta_x \Delta_y \tilde{X}_{t-h}).
$$

Pre-multiply $\Delta_y X_t$ with $I_p = \beta_x \beta'_{x} + \beta_{x \perp} \beta'_{x \perp}$, recall A_x and rearrange to get

$$
\alpha'_{x \perp} \Psi_x \beta_x \beta_{x \perp} \Delta_y \tilde{X}_t = \alpha'_{x \perp} x^t (A_x + \sum_{s=1}^{t} x^{-s} \varepsilon_s) + \alpha'_{x \perp} \frac{\alpha_y \beta'_{y}}{y - x} \Delta_x \tilde{X}_t - \alpha'_{x \perp} \sum_{j=1}^{k-2} \Phi_j \sum_{h=0}^{j-1} x^{h-j} \Delta_x \Delta_y \tilde{X}_{t-h}.
$$

The matrix $\alpha'_{x \perp} \Psi_x \beta_{x \perp}$ is invertible by Assumption A, so pre-multiply with its inverse and then by $x \beta'_{x \perp}$ to get (A.3).}

B Proof of asymptotic result

The abbreviations $a.s.$, P and D are used for properties holding almost surely, in probability, and in distribution respectively. For a matrix m let $m^{\otimes 2} = mm'$.

B.1 Notation and preliminary asymptotic results

B.1.1 Rotating the data vector

A feature of the vector autoregressive setup is its invariance to linear transformations. In the main discussion of the results the vector $X_t = (P_t, D_t)'$ is analysed. In the
proofs it is convenient to choose \(X_t \) in a different way. The issue is that the bubble hypothesis is that
\[
M_t = P_t + D_t - (1 + R)P_{t-1}
\] (B.1)
is a martingale difference where the contemporaneous component of \(M_t \) is \(P_t + D_t \). For the proof it is convenient to choose
\[
X_t = \begin{pmatrix} P_t + D_t \\
D_t
\end{pmatrix} = \begin{pmatrix} 1 & 1 \\
0 & 1
\end{pmatrix} \begin{pmatrix} P_t \\
D_t
\end{pmatrix}.
\] (B.2)

Accordingly the error term of the model equation is denoted
\[
\varepsilon_t = \begin{pmatrix} \varepsilon_{M,t} \\
\varepsilon_{D,t}
\end{pmatrix} \quad \text{with} \quad \Omega = \text{Cov}(\varepsilon_t) = \begin{pmatrix} \sigma_{MM} & \sigma_{MD} \\
\sigma_{DM} & \sigma_{DD} \end{pmatrix},
\]
and the conditional error \(\varepsilon_{D,M,t} = \varepsilon_{M,t} - \omega \varepsilon_{D,t} \) where \(\omega = \sigma_{DM}\sigma_{MM}^{-1} \). The spread is
\[
S_t = \beta'_1X_t = P_t - R^{-1}D_t = (P_t + D_t) - GD_t \quad \text{with} \quad G = R^{-1} + 1. \] (B.3)

Accordingly the cointegrating and the coexplosive vectors for the rotated system are
\[
\beta_1 = \begin{pmatrix} 1 \\
-G
\end{pmatrix}, \quad \beta_{1\perp} = \begin{pmatrix} 0 \\
1
\end{pmatrix}, \quad \beta_\rho = \begin{pmatrix} 0 \\
1
\end{pmatrix}, \quad \beta_{\rho\perp} = \begin{pmatrix} 1 \\
0
\end{pmatrix}. \] (B.4)

B.1.2 The data generating process

In the probabilistic analysis the properties of the likelihood function will be analysed for each parameter \((\vartheta^o, \Omega_o)\) satisfying the restricted model \(M_{1DSB}\). Introduce the vector \(S^o_t = (U^o_t, V^o_t, W^o_t)'\) where
\[
U^o_t = \{(\beta^o_1 \Delta_{\rho_o}X_t)', \ldots, (\beta^o_{1\perp} \Delta_{\rho_o}X_t)', \ldots \} \quad \text{and} \quad V^o_t = \beta^o_{1\perp} \Delta_{\rho_o}X_t, \quad W^o_t = \beta^o_{\rho\perp} \Delta_{\rho_o}X_t, \quad R^o_t = (M^o_t, U^o_{t-1})'.
\] (B.5)

The data generating process is
\[
M_t = \varepsilon^o_{M,t}, \quad \Delta_1D_t = (\omega^o, \theta^o)'\mathcal{R}_t + \varepsilon^o_{D,M,t},
\] (B.7)
where \(\vartheta^o = (\omega^o, \theta^o)'\) and \(\theta^o = (\alpha^o_{1,D}, \alpha^o_{\rho,D}, \Phi^o_{1,D}, \ldots, \Phi^o_{k-2,D})\).

B.1.3 Some further parameters

From Nielsen (2010) it is known that the analysis of the unrestricted model \(M_{1D}\) involves the parameters
\[
\tau^o_{\perp} = \Psi^o_{\rho\perp} \delta^o_{\rho\perp} \quad \text{and} \quad \Psi^o_{\rho} = I_p + \frac{\Pi^o_{1}}{1-\rho_o} - \sum_{j=1}^{k-2} \rho_o^{-j} \Phi^o_{j},
\] (B.8)
as well as the projection matrices
\[\mathcal{P}_\alpha^\circ = \tau_\alpha^\circ (\tau_\alpha^\circ \Omega_\tau^\circ)^{-1} \tau_\alpha^\circ \Omega_\tau^\circ, \quad \mathcal{P}_\frac{a}{c}^\circ = \alpha_1^\circ (\alpha_1^\circ \Omega_\tau^\circ)^{-1} \alpha_1^\circ \Omega_\tau^\circ. \]

(B.9)

In the restricted model \(M_{1DSB} \) the restrictions (2.9), (2.10) imply
\[\tau_\frac{c}{a}s = \left(-R_\tau^{-1} \alpha_1^0, -\sum_{j=1}^{k-2} (1 + R_\tau)^{-j} \Phi_{j,D}^\circ \right) = \begin{pmatrix} 1 & 0 \\ 0 & -\theta_\varphi^\circ \end{pmatrix} \mathcal{H}_\varphi^\circ, \]

where the coefficient \(\mathcal{G}_\varphi^\circ \) and the vector \(\mathcal{H}_\varphi^\circ \) are given by
\[\mathcal{G}_\varphi = R_\tau^{-1} + 1, \quad \mathcal{H}_\varphi = \{ \mathcal{G}_\varphi^\circ, R_\tau^{-1}, 0, (1 + R_\tau)^{-1} \beta_\rho, \ldots, (1 + R_\tau)^{-2-k} \beta_\rho \} \].

(B.11)

B.1.4 A preliminary asymptotic result

It is convenient to state a modified version of Lemma A.1 in Nielsen (2010). That result was derived from Chan and Wei (1988) and Nielsen (2005), which in turn is based on Lai and Wei (1985); see also Mynbaev (2011, §6, §8.5). Introduce the block diagonal normalisation matrix \(N_\mathcal{S} = \text{diag}(I_{\dim \mathcal{U}}, N_V, N_W, 1) \) where
\[N_V = \text{diag}\{ T^{-1/2} I_p - r, (1 - \rho)^{-1} \}, \quad N_W = T^{1/2} \rho_\tau^{-1/2}. \]

(B.12)

Lemma B.1 Let \(X_t \) satisfy \(M_{1DSB} \) and be given by (B.7). Assume \(A, B, C \). Let \(\xi \) be a constant satisfying \(\xi < \gamma/(2 + \gamma) \), recalling \(\gamma \) defined in Assumption B.

Define sample variances \(\text{var}(x_t) = T^{-1} \sum_{t=1}^{T} x_t x_t^\prime \). Then stochastic matrices \(\Sigma_{WW}, \Sigma_{VV}, \Sigma_{SS} \) and a deterministic matrix \(\Sigma_{UU} \) exist so
\[(i) \text{var}(\varepsilon_t^\circ) \xrightarrow{a.s.} \Omega_\tau + o(T^{-\xi}) + o(T^{\eta-1/2}) \text{ for all } \eta > 0. \]
\[(ii) \text{var}(U_{t-1}) \xrightarrow{a.s.} \Sigma_{UU} > 0. \]
\[(iii) \hat{\Sigma}_{WW} = \rho_\tau^{-2T} \sum_{t=1}^{T} (W_{t-1}^\circ)^2 = \rho_\tau^{-2T} T \text{var}(W_{t-1}^\circ) \xrightarrow{a.s.} \Sigma_{WW} > 0. \]
\[(iv) \hat{\Sigma}_{VV} = \text{var}(N_V V_{t-1}^\circ) \xrightarrow{D} \Sigma_{VV} > 0. \]
\[(v) \text{var}(N_S S_{t-1}^\circ) \xrightarrow{D} \Sigma_{SS} > 0. \]

Define sample correlations \(\text{corr}(x_t, y_t) = (\sum_{t=1}^{T} x_t y_t^\circ) \sum_{t=1}^{T} x_t y_t^\circ (\sum_{t=1}^{T} y_t y_t^\circ)^{-1/2}, \) so
\[(vi) \text{corr}(S_{t-1}^\circ, \varepsilon_t^\circ) \xrightarrow{a.s.} O(T^{-\xi/2}). \]
\[(vii) \text{corr}(U_{t-1}^\circ, V_{t-1}^\circ, 1, \varepsilon_t^\circ) = O(P^{-1/2}). \]

In addition it holds jointly for some stochastic matrices \(\Sigma_{V_\varepsilon}, \Sigma_{U_\varepsilon}, \Sigma_{VU} \) that
\[(viii) \hat{\Sigma}_{U_\varepsilon} = T^{-1/2} \sum_{t=1}^{T} (U_{t-1}^\circ) \varepsilon_t^\prime \xrightarrow{D} \Sigma_{U_\varepsilon}. \]
\[(ix) \hat{\Sigma}_{W_\varepsilon} = T^{-1/2} \sum_{t=1}^{T} W_{t-1}^\circ \varepsilon_t^\prime \xrightarrow{a.s.} o(T^{1/2}). \]

Proof of Lemma B.1. Similar results are proved in Lemma A.1 in Nielsen (2010) for linear trend model. The difference is largely notational because regression on an intercept is avoided is avoided in the present context and \(\beta_1^\prime \Delta_\rho X_t = \beta_1^\prime \Delta_\rho X_t + \delta^\prime (1 - \rho) t \).
B.1.5 The test for \(\hat{M}_1 \) and \(\hat{M}_{1D} \).

Proof of Theorem 3.1. Lemma B.1 only reformulates a subset of the statements of Lemma A.1 in Nielsen (2010). The remaining statements can be reformulated in a similar fashion. This then feeds into Lemma A.2 of Nielsen (2010) which in turn feeds into Lemma 11.1 of Johansen (1995).

Proof of Theorem 3.2. The polynomial order of the deterministic term is not crucial in the proof of Theorem 4 in Nielsen (2010). So that proof can be modified along the lines sketched in the proof of Lemma B.1 above.

B.2 Some asymptotic results for a given value of \(R \)

The proof will involve analysis of product sums involving \(R_t \) defined as

\[
R_t = (M_t, U_{t-1}')', \quad U_t = \{ (\beta_1 \Delta \rho X_t)', (\beta_2 \Delta X_t)', (\Delta_1 \Delta \rho X_t)', \ldots, (\Delta_1 \Delta X_{t-k+3})' \}'.
\]

for some \(\rho \). These product sums are expanded in terms of the estimation error for \(\hat{R} \). They will be used three times. First, in Lemma B.4 to show that \(\hat{R} \) is \(T^{-1/2} \rho T \)-consistent. Secondly, in Lemma B.6 to establish an expansion of the likelihood which will lead to an improved consistency rate for \(\hat{R} \). Thirdly, in Theorem B.11 to find the asymptotic distribution of the estimators in which the higher order terms of the expansion can be eliminated. It is convenient to introduce the notation

\[
\begin{pmatrix}
S_{\varepsilon M}^0 & S_{\varepsilon W}^0 \\
S_{\varepsilon M}^0 & S_{\varepsilon W}^0
\end{pmatrix} = \frac{1}{T} \sum_{t=1}^{T} \left(\begin{pmatrix} M_t^0 \\ W_t^0 \end{pmatrix} \right) \otimes 2,
\]

\[
\begin{pmatrix}
S_{DD-M}^0 & S_{DD-MR}^0 & S_{DD-MW}^0 \\
S_{RR}^0 & S_{RR}^0 & S_{RW}^0
\end{pmatrix} = \frac{1}{T} \sum_{t=1}^{T} \left(\begin{pmatrix} \varepsilon_{DD-M,t}^0 \\ \varepsilon_{RR,t}^0 \end{pmatrix} \right) \left(\begin{pmatrix} R_t^0 \\ W_t^0 \end{pmatrix} \right),
\]

the sum \(S_{\Delta \Delta} = T^{-1} \sum_{t=1}^{T} (\Delta_1 D_t)^2 \) as well as the partial product sums

\[
\begin{pmatrix}
S_{R \Delta}^0 & S_{W \Delta}^0 \\
S_{R \Delta}^0 & S_{W \Delta}^0
\end{pmatrix} = \left(\begin{pmatrix} S_{RR}^0 & S_{RW}^0 \\ S_{WR}^0 & S_{WW}^0 \end{pmatrix} \right) - \left(\begin{pmatrix} S_{\Delta \Delta}^0 \\ S_{W \Delta}^0 \end{pmatrix} \right) S_{\Delta \Delta}^{-1} \left(\begin{pmatrix} R_{\Delta}^0 \\ W_{\Delta}^0 \end{pmatrix} \right).
\]

Lemma B.2 Assume A, B, C. Define \(D_R = (R - R_o) \) and \(I_R = (R^{-1} - R_o^{-1}) \). Let \(o_{pol} = o(T^{-k}) \) for some finite \(k \) not depending on \(R \). Then

\[
\frac{1}{T} \sum_{t=1}^{T} \varepsilon_{DD-M,t}^0 R_t' \overset{a.s.}{=} S_{DD-MR}^0 - D_R S_{DD-MW}^0 H_o^0 + (D_R + I_R) o_{pol},
\]

\[
\frac{1}{T} \sum_{t=1}^{T} R_t^2 R_t' \overset{a.s.}{=} S_{RR}^0 - D_R S_{RW}^0 H_o^0 + (D_R + I_R) o_{pol},
\]

\[
\frac{1}{T} \sum_{t=1}^{T} R_t R_t' \overset{a.s.}{=} S_{RR}^0 - D_R (S_{RW}^0 H_o^0 + H_o^0 S_{WR}^0) + D^2_R H_o^0 S_{WW}^0 H_o^0 + (D_R + I_R) (1 + \rho_o^T D_R + D_R + I_R) o_{pol}.
\]
In particular it holds

\[
\frac{1}{T} \sum_{t=1}^{T} \varepsilon_{D,M,t}^o M_t' \overset{a.s.}{=} S_{D,M}^o - \mathcal{D}_R(\mathcal{G}^o S_{D,M}^o W + o_{pol}),
\]

\[
\frac{1}{T} \sum_{t=1}^{T} M_t^2 \overset{a.s.}{=} S_{D,M}^o - 2\mathcal{D}_R(\mathcal{G}^o S_{D,M}^o W + o_{pol}) + \mathcal{D}_R^2(\mathcal{G}^o S_{WW}^o W + o(1)) \tag{B.13}
\]

Proof of Lemma B.2. Identities. Recall the definition of \(X \) in (B.2) and of the cointegrating and the coexplosive vectors in (B.4). Then it holds

\[
\begin{pmatrix}
\beta_1' \Delta_{1+R} \\
\beta_1' \Delta_1 \\
\beta_1^1 \Delta_{1+R} \\
\beta_1^\perp \Delta_1
\end{pmatrix}
X_{t-1} =
\begin{pmatrix}
1 & -\frac{1}{R} & -(1 + R) & \frac{1+R}{R} \\
0 & 1 & 0 & -1 \\
1 & R & -(1 + R) & -R(1 + R) \\
1 & 0 & -1 & 0
\end{pmatrix}
\begin{pmatrix}
P_{t-1} \\
D_{t-1} \\
P_{t-2} \\
D_{t-2}
\end{pmatrix}
\]

which has the solution

\[
\begin{pmatrix}
P_{t-1} \\
D_{t-1} \\
P_{t-2} \\
D_{t-2}
\end{pmatrix} =
\begin{pmatrix}
-R & 0 & -1 & 1 + R \\
1 & 1 + R & -R & 0 \\
-R & 0 & -1 & 1 \\
1 & 1 & -R & 0
\end{pmatrix}
\begin{pmatrix}
\frac{1}{1+R^2} \beta_1' \Delta_{1+R} \\
\frac{1}{R(1+R^2)} \beta_1 \Delta_1 \\
\frac{1}{R(1+R^2)} \beta_1^1 \Delta_{1+R} \\
\frac{1}{R} \beta_1^\perp \Delta_1
\end{pmatrix} X_{t-1}. \tag{B.14}
\]

It also holds, see Nielsen (2010, equations A.17, A.18), that

\[
\Delta_1 \Delta_{1+R} X_{t-j} = \Delta_1 \Delta_{1+R_c} X_{t-j} \tag{B.15}
\]

\[
\text{+} (R_c - R)(1 + R_c)^{-j} \{ \Delta_1 X_{t-1} - \sum_{l=1}^{j} (1 + R_c)^{l-1} \Delta_l \Delta_{1+R_c} X_{t-l} \}.
\]

Expansion of \(\mathcal{R} \). It is to be derived that \(\mathcal{R}_t = (M_t, U_{t-1}') \), see (B.6), satisfies

\[
\mathcal{R}_t = \mathcal{R}_t^o - \mathcal{D}_R \mathcal{H}_2 W_{t-1}^o - (\mathcal{D}_R \mathcal{H}_2 + \mathcal{I}_R \varepsilon_2 \mathcal{H}_3) (U_{t-1}'_t, V_{t-1}'_t),
\]

for some matrices \(\mathcal{H}_2 \in \mathbb{R}^{(2k-2)\times(2k-1)} \) and \(\mathcal{H}_3 \in \mathbb{R}^{2k-1} \) not depending on \(R \) and where \(\varepsilon_2 = (0, 1, 0_{1\times 2(k-2)})' \).

The expression for \(M_t \). Since \(M_t = P_t + D_t - (1 + R)P_{t-1} \) by (B.1) then \(M_t = M_t^o - \mathcal{D}_R P_{t-1} \). Due to (B.14) then \(P_{t-1} \) is the sum of \((R_c^{-1} + 1)W_{t-1}^o \) and some linear combination of \(U_{t-1}', V_{t-1}' \).

The first coordinate of \(U_{t-1} \) is \(\beta_1' \Delta_{1+R} X_{t-1} \). Using (2.3) write

\[
\beta_1' \Delta_{1+R} X_{t-1} = \Delta_{1+R} S_{t-1} = M_{t-1} - (R^{-1} + 1) \Delta_1 D_{t-1}.
\]
Writing $M_{t-1} = M_{t-1}^o - D_R P_{t-2}$ and adding and subtracting $R_o^{-1} \Delta_1 D_{t-1}$ shows

$$\beta'_1 \Delta_1 + R \chi_{t-1} = \beta'_1 \Delta_1 + R \chi_{t-1} - D_R P_{t-2} - T \Delta_1 D_{t-1}.$$

Due to (B.14) then P_{t-2} is the sum of $R_o^{-1} W_{t-1}^o$ and some linear combination of U_{t-1}^o, V_{t-1}^o, while $\Delta_1 D_{t-1}$ is some other linear combination of U_{t-1}^o, V_{t-1}^o.

The second coordinate of U_{t-1} is $\beta'_o \Delta_1 X_{t-1} = \Delta_1 D_{t-1}$ and does not depend on R.

The remaining coordinates of U_{t-1} are of the type $\Delta_1 \Delta_1 + R \chi_{t-1}$. These are rewritten using (B.15). Thus, pre-multiplying $\Delta_1 X_{t-1}$ by $I_R = \beta'_o \beta'_o + \beta'_o \beta'_o$ it is seen that $\Delta_1 \Delta_1 + R \chi_{t-1}$ is the sum of $\Delta_1 \Delta_1 + R \chi_{t-1} - D_R (1 + R_o)^{-1} \beta'_o \beta'_o \Delta_1 X_{t-1}$ and some linear combination of U_{t-1}^o, V_{t-1}^o.

Product sums. The first component of interest is

$$\frac{1}{T} \sum_{t=1}^T \varepsilon_{D,M,t}^o R_t^o a.s. = \frac{1}{T} \sum_{t=1}^T \varepsilon_{D,M,t}^o R_t^o - D_R \frac{1}{T} \sum_{t=1}^T \varepsilon_{D,M,t}^o W_{t-1}^o \mathcal{H}^o - \frac{1}{T} \sum_{t=1}^T \varepsilon_{D,M,t}^o (U_{t-1}^o, V_{t-1}^o) (D_R \mathcal{H}_2 + I_R \mathcal{H}_3 e_2').$$

The processes U_{t-1}^o, V_{t-1}^o are of polynomial order, see Nielsen (2005, Theorem 5.1), so $T^{-1} \sum_{t=1}^T \varepsilon_{D,M,t}^o (U_{t-1}^o, V_{t-1}^o)' = o_{pol} a.s.$ Note that the first coordinate $\frac{1}{T} \sum_{t=1}^T \varepsilon_{D,M,t}^o M_t$ does not have an I_R component.

By a similar argument then, with $S_1 = T^{-1} \sum_{t=1}^T \mathcal{R}_t^o (U_{t-1}^o, V_{t-1}^o)' (D_R \mathcal{H}_2 + I_R \mathcal{H}_3 e_2')$

$$\frac{1}{T} \sum_{t=1}^T \mathcal{R}_t^o R_t^o a.s. = \frac{1}{T} \sum_{t=1}^T R_t^o R_t^o - D_R \frac{1}{T} \sum_{t=1}^T R_t^o W_{t-1}^o \mathcal{H}^o - S_1,$$

The processes $\mathcal{R}_t^o, U_{t-1}^o, V_{t-1}^o$ are of polynomial order, see Nielsen (2005, Theorem 5.1) so $\sum_{t=1}^T \mathcal{R}_t^o (U_{t-1}^o, V_{t-1}^o)' = o_{pol} a.s.$

By a similar argument then, with S_1 as above and

$$S_2 = (D_R \mathcal{H}_2 + I_R \mathcal{H}_3 e_2') \frac{1}{T} \sum_{t=1}^T (U_{t-1}^o, V_{t-1}^o) (D_R \mathcal{H}_2 + I_R \mathcal{H}_3 e_2'),$$

$$S_3 = (D_R \mathcal{H}_2 + I_R \mathcal{H}_3 e_2') \frac{1}{T} \sum_{t=1}^T (U_{t-1}^o, V_{t-1}^o) (U_{t-1}^o, V_{t-1}^o) (D_R \mathcal{H}_2 + I_R \mathcal{H}_3 e_2'),$$

it holds that

$$\frac{1}{T} \sum_{t=1}^T \mathcal{R}_t^o R_t^o a.s. = \frac{1}{T} \sum_{t=1}^T \mathcal{R}_t^o R_t^o - D_R \frac{1}{T} \sum_{t=1}^T (\mathcal{R}_t^o W_{t-1}^o \mathcal{H}^o + \mathcal{H}^o W_{t-1}^o \mathcal{R}_t^o)'$$

$$+ D_R \frac{1}{T} \sum_{t=1}^T \mathcal{H}^o (W_{t-1}^o)^2 \mathcal{H}^o - S_1 - S_2 + S_2' + S_3.$$

As argued above $\sum_{t=1}^T \mathcal{R}_t^o (U_{t-1}^o, V_{t-1}^o)'$ and $\sum_{t=1}^T (U_{t-1}^o, V_{t-1}^o) (U_{t-1}^o, V_{t-1}^o)$ are of polynomial order while $T^{-1/2} \sum_{t=1}^T \mathcal{R}_t^o W_{t-1}^o = o(\rho_t)$ a.s. by Lemma B.1(i,v,vi).
B.3 Consistency under H_B

The expression for the martingale difference M_t is quadratic in the unknown parameters, so global consistency can be proved under H_B in contrast to the co-explosive analysis in Nielsen (2010). The starting point is the profile log likelihood for the parameter R. Let $\hat{\sigma}_M^2(R)$ and $\hat{\sigma}_{D,M}^2(R)$ denote the residual variances of the regression equations (2.11), (2.12). Then the profile log likelihood is

$$\ell(R) = -\frac{T}{2} \log \{ \hat{\sigma}_M^2(R) \hat{\sigma}_{D,M}^2(R) \}. \quad (B.16)$$

The residual variances at R_o satisfy the following results.

Lemma B.3 Assume A, B, C. Then

(i) $\hat{\sigma}_M^2(R_o) = T^{-1} \sum_{t=1}^T M_t^2 = S_{\epsilon M \epsilon M}^o \overset{a.s.}{\rightarrow} \sigma_{M M}^o$,

(ii) $\hat{\sigma}_{D,M}^2(R_o) \overset{a.s.}{\rightarrow} \sigma_{D D,M}^o$.

(iii) $2\ell(R_o) = -T \log \det(S_{\epsilon \epsilon}^o) + \sigma_{D D,M}^{-1} \hat{\Sigma}_{\epsilon D,M} \hat{\Sigma}_{\epsilon U} S_{\epsilon U}^{-1} \hat{\Sigma}_{\epsilon D,M} + o(1)$.

Proof of Lemma B.3.

(i) Use $M_t^2 = \epsilon_{M,t}^2$.

(ii) Note $\hat{\sigma}_{D,M}^2(R_o) = T^{-1} \sum_{t=1}^T (\epsilon_{D,M,t}^2 | R_t^o)^2$. Since $R_t = (\epsilon_{M,t}^o, U_{t-1}^o)'$, see (B.6), and $\epsilon_{D,M,t}, \epsilon_{M,t}, U_{t-1}$ are asymptotically uncorrelated then Lemma B.1(iii) implies

$$\hat{\sigma}_{D,M}^2(R_o) \overset{a.s.}{\rightarrow} S_{\epsilon D,M \epsilon D,M}^o - \{ S_{\epsilon D,M \epsilon D,M}^o S_{\epsilon M \epsilon D,M}^{-1} S_{\epsilon M \epsilon D,M}^o + S_{\epsilon D,M \epsilon D,M} S_{\epsilon D,M \epsilon D,M}^{-1} S_{\epsilon D,M \epsilon D,M}^{-1} \} \{ 1 + o(T^{-1/4}) \}. \quad (B.17)$$

Lemma B.1(ii,vii) shows $S_{\epsilon D,M \epsilon D,M}^o, \Sigma_{\epsilon D,M \epsilon D,M} = o(T^{-3/8})$ while $S_{\epsilon M \epsilon M}^{-1}, S_{\epsilon U \epsilon U}^{-1}$ converge so

$$\hat{\sigma}_{D,M}^2(R_o) \overset{a.s.}{\rightarrow} S_{\epsilon D,M \epsilon D,M}^o - S_{\epsilon D,M \epsilon D,M}^o S_{\epsilon M \epsilon D,M}^{-1} S_{\epsilon M \epsilon D,M}^o - S_{\epsilon D,M \epsilon D,M} S_{\epsilon D,M \epsilon D,M}^{-1} S_{\epsilon D,M \epsilon D,M}^{-1} + o(T^{-1}) \quad (B.17)$$

and in particular $\hat{\sigma}_{D,M}^2(R_o) \rightarrow \sigma_{D D,M}^o$ as desired.

(iii) Apply the expansion $\log(1 + h) = h + O(h^2)$ to (B.17) keeping the first two terms as the main term and noting $S_{\epsilon D,M \epsilon D,M}^o, S_{\epsilon D,M \epsilon U}^o = o(T^{-3/8})$ to get

$$-T \log \{ \hat{\sigma}_{D,M}^2(R_o) \} \overset{a.s.}{\rightarrow} -T \log(S_{\epsilon D,M \epsilon D,M}^o - S_{\epsilon D,M \epsilon D,M}^o S_{\epsilon M \epsilon D,M}^{-1} S_{\epsilon M \epsilon D,M}^o)$$

$$+ T S_{\epsilon D,M \epsilon D,M}^{-1} S_{\epsilon D,M \epsilon D,M} S_{\epsilon D,M \epsilon D,M}^{-1} S_{\epsilon D,M \epsilon D,M}^{-1} + o(1).$$

Insert this and $-T \log \{ \hat{\sigma}_M^2(R_o) \} = -T \log S_{\epsilon D,M}^o$ into (B.16) to get

$$2\ell(R_o) = -T \log(S_{\epsilon D,M}^o - S_{\epsilon D,M}^o S_{\epsilon M \epsilon D,M}^{-1} S_{\epsilon M \epsilon D,M}^o)$$

$$+ T S_{\epsilon D,M \epsilon D,M}^{-1} S_{\epsilon D,M \epsilon D,M} S_{\epsilon D,M \epsilon D,M}^{-1} S_{\epsilon D,M \epsilon D,M}^{-1} + o(1).$$

Due to the identity

$$\det(S_{\epsilon \epsilon}^o) = \det \left\{ \frac{1}{T} \sum_{t=1}^T \begin{pmatrix} \epsilon_{M,t}^o \\ \epsilon_{D,t}^o \end{pmatrix} \right\} \overset{\otimes 2}{=} \det \left\{ \frac{1}{T} \sum_{t=1}^T \begin{pmatrix} \epsilon_{D,M,t}^o \\ \epsilon_{D,t}^o \end{pmatrix} \right\} \overset{\otimes 2}{=}$$

the first term of $2\ell(R_o)$ is $-T \log \det(S_{\epsilon \epsilon}^o)$. For the second term note $S_{\epsilon U \epsilon U}^o \rightarrow \Sigma_{\epsilon U \epsilon U}$ and $S_{\epsilon D,M \epsilon D,M}^o \rightarrow \sigma_{D D,M}$ while $T^{1/2} S_{\epsilon D,M \epsilon U}^o = \hat{\Sigma}_{\epsilon D,M \epsilon U}$. □
Lemma B.4 Consider the maximum likelihood estimators under H_B. Assume A, B, C. Then $\hat{R} - R = o(T^{1/2} \rho^{-T})$ a.s.

Proof of Lemma B.4. Let R_0 denote the true value of R.

Likelihood value at R_0. Lemma B.3 shows $\hat{\sigma}_M^2(R_0) = T^{-1} \sum_{t=1}^T \varepsilon_{M,t}^2$ and $\hat{\sigma}_{D,M}^2(R_0) = T^{-1} \sum_{t=1}^T (\varepsilon_{D,M,t}^2|R_t^0)$. Lemma B.1(i, vi) then implies

$$\hat{\sigma}_M^2(R_0) \overset{a.s.}{\to} \sigma_M^2, \quad \hat{\sigma}_{D,M}^2(R_0) \overset{a.s.}{\to} \sigma_{D,M}^2.$$

Likelihood value outside neighbourhood of R_0. For any $\delta > 0$ consider an R so $|N_W^{-1}(R - R_0)| > \delta$. It is to be shown that

$$\liminf_{T \to \infty} \hat{\sigma}_M^2(R_0) = \sigma_M^2 + \delta^2 \kappa_P, \quad \liminf_{T \to \infty} \hat{\sigma}_{D,M}^2(R_0) \geq \sigma_{D,M}^2,$$

where $\kappa_P = G^2 \lim_{T \to \infty} \rho_0^{-2T} \sum_{t=1}^T (W_{t-1}^o)_2^2 > 0$ a.s. for $\rho_0 = 1 + R_0$.

For the first result note that by (B.13) then

$$\hat{\sigma}_M^2(R) \overset{a.s.}{\to} S_{MM}^0 + 2(R_0 - R)G^2 S_{MW}^0 + (R_0 - R)^2 G^2 S_{WW}^0 + O(T^{-1}). \quad (B.18)$$

Due to Lemma B.1(i, iii, vi) then

$$\hat{\sigma}_M^2(R) \overset{a.s.}{\to} \sigma_M^2 + T^{-1} \rho_0^{-2T} (R_0 - R)^2 \kappa_P + 2T^{-1/2} \rho_0^T (R_0 - R) o(1) + o(1).$$

Thus, for any R outside a neighbourhood of R_0 this has the stated limes inferior.

For the second result write the residual variance as

$$\hat{\sigma}_{D,M}^2(R) = \frac{1}{T} \sum_{t=1}^T (\Delta_1 D_t|R_t)^2.$$

As $M_t = M_t^0 + (R_0 - R)P_{t-1}$ the regressor R_t is a linear combination of M_t^0, S_{t-1}^o. Moreover, $\Delta_1 D_t = \theta_0^0 R_t^0 + \varepsilon_{D,M,t}^0$ for some θ_0 while R_t^0 is a linear combination of M_t^0, S_{t-1}^o and $M_t^0 = \varepsilon_{M,t}^0$. Thus

$$\hat{\sigma}_{D,M}^2(R) \geq \frac{1}{T} \sum_{t=1}^T (\Delta_1 D_t|M_t^0, S_{t-1}^o)^2 = \frac{1}{T} \sum_{t=1}^T (\varepsilon_{D,M,t}^0|\varepsilon_{M,t}^0, S_{t-1}^o)^2.$$

Since the sample correlations of $\varepsilon_{D,M,t}^0$, $\varepsilon_{M,t}^0$ and S_{t-1}^o vanish asymptotically then $\hat{\sigma}_{D,M}^2(R)$ has the stated limes inferior.

Continuity of likelihood function. The profile log likelihood $\ell(R)$ is continuous and will, asymptotically, attain its minimum in a compact interval $|N_W^{-1}(R - R_0)| \leq \delta$ as it is large outside the interval. This shows the desired consistency. ■
B.4 Expanding likelihood under H_B

The profile likelihood for R is analysed. The first Lemma expands log determinants.

Lemma B.5 $\log \det(I + h) = \text{tr}(h) - \frac{1}{2} \text{tr}(h^2) + \frac{1}{3} \text{tr}(h^3) + O(||h||^4)$.

Proof of Lemma B.5. Any matrix h can be decomposed as $h = ABA^{-1}$ where B is a triangular, possibly complex matrix with diagonal elements λ_j, see Mirsky (1961, p. 266, 307). Thus, $I + h = A(I + B)A^{-1}$ and $\det(I + h) = \det(I + B) = \prod_{j=1}^{\dim h} (1 + \lambda_j)$. By the expansion $\log(1 + x) = x - x^2/2 + x^3/6 + O(x^4)$ it holds

$$\log \det(I + J) = \sum_{j=1}^{\dim h} \log(1 + \lambda_j) = \sum_{j=1}^{\dim h} \{\lambda_j - \frac{1}{2} \lambda_j^2 + \frac{1}{3} \lambda_j^3 + O(\lambda_j^4)\}.$$

Noting that $\text{tr}(B^k) = \sum_{j=1}^{\dim h} \lambda_j^k$ and $\text{tr}(A^k) = \text{tr}(B^k)$ the desired result follows. \[\square\]

The next step is to write the profile likelihood in terms quadratic functions in R.

Lemma B.6 Assume A, B, C. Under H_B the profile likelihood has expansion

$$2\{\ell(R) - \ell(R_o)\} = 2\{\tilde{\ell}(R) - \tilde{\ell}(R_o)\} + o(1)$$

for $|R - R_o| \leq cT^{1/2} \rho_o^{-T}$ for any $c > 0$. Here $\tilde{\ell}(R) = \tilde{\ell}_M(R) + \tilde{\ell}_{R,\Delta}(R) + \tilde{\ell}_{R}(R)$ with

$$\tilde{\ell}_M(R) = -\frac{T}{2} \log(S_{\varepsilon_M \varepsilon_M}^o - 2D_R \Gamma^o S_{\varepsilon_M W}^o + D_R^o \Gamma^{o^2} S_{WW}^o),$$

$$\tilde{\ell}_{R,\Delta}(R) = -\frac{T}{2} \log \det\{S_{R,\varepsilon_M}^o - D_R(S_{R,\varepsilon_M}^o \mathcal{H}^o + \mathcal{H}^o S_{W,\varepsilon_M}^o) + D_R^o \mathcal{H}^o S_{WW,\varepsilon_M}^o\},$$

$$\tilde{\ell}_R(R) = -\frac{T}{2} \log \det\{S_{R,\varepsilon_M}^o - D_R(S_{R,\varepsilon_M}^o \mathcal{H}^o + \mathcal{H}^o S_{W,\varepsilon_M}^o) + D_R^o \mathcal{H}^o S_{WW,\varepsilon_M}^o\}.$$

Proof of Lemma B.6. Profile likelihood. This is given by

$$2\ell(R) = -T \log\{\hat{\sigma}_M^2(R)\} - T \log\{\hat{\sigma}_{D,M}^2(R)\}. \quad (B.19)$$

It will be shown that this is quadratic in R up to an approximation.

Component involving $\hat{\sigma}_M^2(R)$. Since $\hat{\sigma}_M^2(R) = T^{-1} \sum_{t=1}^T M_t^2$ consider the expansion (B.13). Since $D_R = o(T^{1/2} \rho_o^{-T})$ then

$$\hat{\sigma}_M^2(R) \overset{a.s.}{=} S_{\varepsilon_M \varepsilon_M}^o - 2D_R \Gamma^o S_{\varepsilon_M W}^o + D_R^o \Gamma^{o^2} S_{WW}^o + o(T^{-1}).$$

The expansion $\log(1 + h) = O(h)$ shows

$$\log\{\hat{\sigma}_M^2(R)\} \overset{a.s.}{=} \log(S_{\varepsilon_M \varepsilon_M}^o - 2D_R \Gamma^o S_{\varepsilon_M W}^o + D_R^o \Gamma^{o^2} S_{WW}^o) + o(T^{-1}). \quad (B.20)$$
Component involving $\hat{\sigma}_{2D, M}^2(R)$. First, by the rule for taking determinants of partitioned matrices

$$
\log\{\hat{\sigma}_{2D, M}^2(R)\} = \log\det\{T^{-1} \sum_{t=1}^{T} (\mathcal{R}_t|\Delta_1 D_t)^{\otimes 2}\}
$$

$$
- \log\det\{T^{-1} \sum_{t=1}^{T} (\mathcal{R}_t)^{\otimes 2}\} + \log\{T^{-1} \sum_{t=1}^{T} (\Delta_1 D_t)^2\}. \quad (B.21)
$$

The last term does not depend on R.

For the second term of (B.21) apply Lemma B.2 to get

$$
\frac{1}{T} \sum_{t=1}^{T} \mathcal{R}_t \mathcal{R}_t^\prime \overset{a.s.}{=} S_0^\circ \mathcal{D}_R(S_0^\circ \mathcal{H}^\prime + \mathcal{H}^\circ S_0^\circ \mathcal{R}) + \mathcal{D}_R^2 \mathcal{H}^\circ S_0^\circ \mathcal{H}^\prime + o(T^{-1}).
$$

Applying the log determinant expansion in Lemma B.5 it follows that

$$
\log\det\{T^{-1} \sum_{t=1}^{T} (\mathcal{R}_t)^{\otimes 2}\} \overset{a.s.}{=} \tilde{\ell}_R(R) + o(T^{-1}). \quad (B.22)
$$

Apply a similar argument for the first term of (B.21) to get

$$
\log\det\{T^{-1} \sum_{t=1}^{T} (\mathcal{R}_t|\Delta_1 D_t)^{\otimes 2}\} \overset{a.s.}{=} \tilde{\ell}_{R \Delta}(R) + o(T^{-1}). \quad (B.23)
$$

Profile likelihood expansion. Insert (B.22) and (B.23) into the expression for $\log(\hat{\sigma}_{2D, M}^2)$ in (B.21) and in turn insert this and the expression (B.20) for $\log(\hat{\sigma}_M^2)$ into the profile likelihood (B.19) to get

$$
2\ell(R) \overset{a.s.}{=} 2\tilde{\ell}(R) - T \log(S_{\Delta \Delta}) + o(1).
$$

Finally note that $\ell_R(R) = \tilde{\ell}_R(R) - T \log(S_{\Delta \Delta})$. ■

The derivatives of the approximation $\tilde{\ell}$ to the profile likelihood are considered.

Lemma B.7 Assume A, B, C. Under H_B then

$$
\tilde{\ell}'(R) = \rho_0^T \{\mathcal{G}^2 S_{\varepsilon M}^{\circ -1} \hat{\Sigma}_{M \varepsilon M} + \mathcal{H}^\prime(\hat{\mathcal{S}}_{M \varepsilon M \Delta \Delta} - \hat{\mathcal{S}}_{M \varepsilon M \Delta})\},
$$

$$
\tilde{\ell}''(R) \overset{a.s.}{=} -\rho_0^{2T} \mathcal{S}_{WW} \{\mathcal{G}^2 S_{\varepsilon M}^{\circ -1} + \mathcal{H}^\prime(\mathcal{S}_{M \varepsilon M \Delta \Delta} - \mathcal{S}_{M \varepsilon M \Delta})\} \{1 + o(1)\},
$$

where $\hat{\Sigma}_{RW} = \sum_{t=1}^{T} \hat{\mathcal{R}}_t \hat{W}_{t-1}$. It holds that

$$
\tilde{\ell}'(R) \overset{a.s.}{=} o(T^{1/4} \rho_0^T), \quad \{\tilde{\ell}''(R)\}^{-1} = O(\rho_0^{-2T}), \quad \tilde{\ell}'''(R) = o(T^{-3/4} \rho_0^{3T}).
$$
Proof of Lemma B.7. Term $\tilde{\ell}_M(R)$. This satisfies

$$-(2/T)\tilde{\ell}_M(R) = \log(S_{\epsilon M \epsilon M}^0) + \log(1 + h).$$

where $h = -2D_R G^\epsilon S_{\epsilon M \epsilon M}^{-1} S_{\epsilon M W}^0 + D_R^2 G^\epsilon S_{\epsilon M \epsilon M}^{-1} S_{W W}^0$. Apply the log expansion in Lemma B.5. Rearrange to get an expansion in D_R which is

$$\log(1 + h) = -2D_R G^\epsilon S_{\epsilon M \epsilon M}^{-1} S_{\epsilon M W}^0 + D_R^2 G^\epsilon (S_{\epsilon M \epsilon M}^{-1} S_{W W}^0 - 2S_{\epsilon M \epsilon M} S_{\epsilon M W}^0)$$

$$+ D_R^2 G^\epsilon (2S_{\epsilon M \epsilon M}^0 S_{\epsilon M W} - \frac{8}{3} S_{\epsilon M \epsilon M} S_{\epsilon M W}^0) + O(D_R^4).$$

Hence the coefficient to D_R gives the first derivative $\tilde{\ell}_M'(R_0) = T \mathcal{G} S_{\epsilon M \epsilon M}^{-1} S_{\epsilon M W}^0$. Replacing $T S_{\epsilon M W} = T^{1/2} (\rho_{\epsilon M}^{-1} \sum_{t=1}^{T} \epsilon_{M t} W_{t-1}^{-1}) (T^{-1/2} \rho_{\epsilon M}^{-1}) = T^{1/2} S_{\epsilon M W} N_W^{-1}$ gives

$$\tilde{\ell}_M'(R_0) = T^{1/2} \mathcal{G} S_{\epsilon M \epsilon M}^{-1} \tilde{\Sigma}_{\epsilon M W} N_W^{-1}.$$

Likewise the second and third derivatives are

$$\tilde{\ell}_M''(R_0) = (2!) (T/2) \mathcal{G}^\epsilon (S_{\epsilon M \epsilon M}^{-1} S_{W W}^0 - 2S_{\epsilon M \epsilon M} S_{\epsilon M W}^0)$$

$$\tilde{\ell}_M'''(R_0) = (3!) (T/2) \mathcal{G}^\epsilon (2S_{\epsilon M \epsilon M}^0 S_{\epsilon M W} - \frac{8}{3} S_{\epsilon M \epsilon M} S_{\epsilon M W}^0)$$

Noting that $S_{\epsilon M \epsilon M}^0, S_{W W} N_W^2 = \tilde{\Sigma}_{W W}$ are convergent while $S_{\epsilon M W} N_W = o(T^{-1/4})$ then

$$\tilde{\ell}_M''(R_0) = -T \mathcal{G}^\epsilon S_{\epsilon M \epsilon M}^{-1} \tilde{\Sigma}_{W W} N_W^{-2} \{1 + o(1)\}, \quad \tilde{\ell}_M'''(R_0) = o(T^{-3/4} \rho_{\epsilon M}^{-3T}).$$

Term $\tilde{\ell}_R(R)$. This satisfies

$$-(2/T)\tilde{\ell}_R(R) = \log(\det(\Sigma_{R \epsilon R})) + \log(1 + h)$$

where $h = -D_{R \epsilon} S_{R \epsilon (R \epsilon)^\epsilon} + D_{R \epsilon}^2 (R \epsilon)^\epsilon$. Apply the log expansion in Lemma B.5. Rearrange to get an expansion in D_R which is

$$\log(1 + h) = -2D_R tr\{S_{R \epsilon (R \epsilon)^\epsilon}^0 (\epsilon)^\epsilon\} + D_R^2 \{tr(\epsilon)^\epsilon S_{W W}^0 (\epsilon)^\epsilon) - tr(B^2)/2\}

+ D_R^3 \{B S_{R \epsilon (R \epsilon)^\epsilon} S_{W W}^0 (\epsilon)^\epsilon/2 - B^3/3\} + O(D_R^4),$$

where $B = S_{R \epsilon (R \epsilon)^\epsilon} S_{W W}^0 (\epsilon)^\epsilon$. By considerations as above it is seen that $B = o(T^{-3/4} \rho_{\epsilon M}^{-3T})$ and the derivatives satisfy

$$\tilde{\ell}_R'(R_0) = T^{1/2} tr\{H^\epsilon S_{R \epsilon (R \epsilon)^\epsilon} N_W^{-1}\}, \quad \tilde{\ell}_R''(R_0) = o(T^{-3/4} \rho_{\epsilon M}^{-3T}),$$

$$\tilde{\ell}_R'''(R_0) = T^2 tr\{H^\epsilon S_{R \epsilon (R \epsilon)^\epsilon}^0 H^\epsilon S_{W W} N_W^{-2} \{1 + o(1)\}.$$

Term $\tilde{\ell}_{R \epsilon}(R)$. Same derivation as for $\tilde{\ell}_R(R)$ replacing $S_{R \epsilon}, S_{R \epsilon W}$ and $S_{W W}$ by $S_{R \epsilon \epsilon}, S_{R \epsilon W \epsilon}$ and $S_{W W \epsilon} = S_{W W} \{1 + o(1)\}.$

The expressions for the $\tilde{\ell}'$ and $\tilde{\ell}''$ are simplified using the parameter $\tau_{\epsilon M}$ from (B.10).
Lemma B.8 Assume A, B, C. Under H_B then

\[\tilde{L}(R_0) \overset{\text{a.s.}}{=} \rho_0^T \left\{ \tau_\perp^o \Omega_0^{-1} \hat{\Sigma}_W + o(T^{-1/4}) \right\} \]

\[-\tilde{L}^r(R_0) \overset{\text{a.s.}}{=} \rho_0^{2T} \tau_\perp^o \Omega_0^{-1} \tau_\perp^o \Sigma_W \{ 1 + o(1) \}.\]

Proof of Lemma B.8. Product moment matrices. Recall from (B.7) that $\Delta_1 D_t = (\omega^o, \theta^o) R_t^o + \varepsilon^D_{D,t}$ and note $\omega^o = \sigma_{MM}^o \sigma_{DM}^o$. It holds, for all $\eta > 0$, see Lemma B.1(i,vii),

\[S_{RR} \overset{\text{a.s.}}{\Rightarrow} \begin{pmatrix} \sigma_{MM}^o & 0 \\ 0 & \Sigma_{UU}^o \end{pmatrix}, \quad \text{(B.24)} \]

\[S_{\Delta \Delta} \overset{\text{a.s.}}{=} \begin{pmatrix} \sigma_{MM}^o & \Sigma_{UU}^o \theta^o \\ \Sigma_{UU}^o \theta^o & \Sigma_{UU}^o \theta^o \end{pmatrix} = \left(\begin{pmatrix} \sigma_{DM}^o \\ \Sigma_{UU}^o \theta^o \end{pmatrix} \right) + o(T^{-1/2}). \quad \text{(B.25)} \]

Since $\Delta_1 D_t$ also satisfies $\Delta_1 D_t = \theta^o R_t^o + \varepsilon^D_{D,t}$ then

\[S_{\Delta \Delta} \overset{\text{a.s.}}{=} \sigma_{DD}^o + \theta^o \Sigma_{UU}^o \theta^o + o(T^{-1/2}). \quad \text{(B.26)} \]

Moreover, exploiting $\Delta_1 D_t = (\omega^o, \theta^o) R_t^o + \varepsilon^D_{D,t}$ and $\varepsilon^D_{D,t} = \varepsilon^o_{D,t} + \omega^o \varepsilon^o_{M,t}$ it holds

\[TS_{RW} = \sum_{t=1}^T \left(\begin{pmatrix} \varepsilon^o_{M,t} \\ U_{t-1}^o \end{pmatrix} \right) W_{t-1}^o, \quad TS_{\Delta W} = \hat{\Sigma}_{\Delta W} = (1, \theta') \sum_{t=1}^T \left(\begin{pmatrix} \varepsilon^o_{D,t} \\ U_{t-1}^o \end{pmatrix} \right) W_{t-1}^o. \quad \text{(B.27)} \]

Information. Combine the expressions (B.24), (B.25), (B.26) to get

\[S_{RR \Delta}^o = S_{RR}^o - S_{\Delta \Delta}^o S_{\Delta \Delta}^o S_{RR}^o \overset{\text{a.s.}}{\Rightarrow} \begin{pmatrix} \sigma_{MM}^o & 0 \\ 0 & \Sigma_{UU}^o \end{pmatrix} \left(\begin{pmatrix} \sigma_{DM}^o \\ \Sigma_{UU}^o \theta^o \end{pmatrix} \right) \left(\begin{pmatrix} \sigma_{MM}^o & 0 \\ 0 & \Sigma_{UU}^o \theta^o \end{pmatrix} \right) = \frac{1}{\sigma_{DD}^o + \theta^o \Sigma_{UU}^o \theta^o}. \quad \text{(B.28)} \]

The partitioned inversion formula $A_{11}^{-1} = A_{11}^{-1} + A_{11}^{-1} A_{12} A_{22}^{-1} A_{21} A_{11}^{-1}$ shows, noting that $\omega^o = \sigma_{MM}^{o-1} \sigma_{DM}^o$,

\[S_{RR \Delta}^o = S_{RR}^o - S_{\Delta \Delta}^o S_{\Delta \Delta}^o S_{RR}^o \overset{\text{a.s.}}{=} \begin{pmatrix} \sigma_{MM}^{o-1} \\ 0 \end{pmatrix} \begin{pmatrix} \sigma_{DM}^o \\ \Sigma_{UU}^o \theta^o \end{pmatrix} \begin{pmatrix} \sigma_{MM}^o & 0 \\ 0 & \Sigma_{UU}^o \theta^o \end{pmatrix} + o(T^{-1/4}) \]

\[\sigma_{DD}^o + \theta^o \Sigma_{UU}^o \theta^o - \left(\begin{pmatrix} \sigma_{DM}^o \\ \Sigma_{UU}^o \theta^o \end{pmatrix} \right) \left(\begin{pmatrix} \sigma_{MM}^{o-1} \\ 0 \end{pmatrix} \begin{pmatrix} \sigma_{DM}^o \\ \Sigma_{UU}^o \theta^o \end{pmatrix} \right) \]

\[= \frac{1}{\sigma_{DD}^o} \left(\begin{pmatrix} \omega^o \\ \theta^o \end{pmatrix} \right) \overset{\text{a.s.}}{\Rightarrow} + o(T^{-1/4}). \quad \text{(B.28)} \]

Further, note that $S_{\varepsilon M \varepsilon M}^o \overset{\text{a.s.}}{=} \sigma_{MM}^o$ while the definition of τ_\perp^o in (B.10) implies

\[(\omega^o, \theta^o) \mathcal{H} = (\omega^o, -1) \tau_\perp^o, \quad \mathcal{G}^o = (1, 0) \tau_\perp^o. \quad \text{(B.29)} \]
Combining these expressions shows
\[G^{\circ 2}S^{\circ -1}_{\mu_{\Delta} \in \Delta} + \mathcal{H}'(S^{\circ -1}_{\mathcal{R}, \Delta} - S^{\circ -1}_{\mathcal{R}, \Gamma})\mathcal{H} \overset{\text{a.s.}}{\rightarrow} \tau_{\lambda}'\{\sigma_{\mu\mu}'(1) \otimes 2 + \sigma_{DD\cdot M}' \begin{pmatrix} \omega^\circ \\ -1 \end{pmatrix} \otimes 2\} \tau_{\lambda}'. \]

Finally, the desired expression follows since by partitioned inversion
\[\Omega_{\circ}^{-1} = \sigma_{\mu\mu}' \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes 2 + \sigma_{DD\cdot M}' \begin{pmatrix} \omega^\circ \\ -1 \end{pmatrix} \otimes 2. \quad \text{(B.30)} \]

Score. Combine (B.25), (B.26), (B.27) to get
\[\hat{\Sigma}_{\Delta\cdot \Delta} = \hat{\Sigma}_{\hat{\Delta} W} - S^{\circ -1}_{\hat{\Delta} \hat{\Delta}} \mathcal{S}^{\circ -1}_{\hat{\Delta} \hat{\Delta}} \hat{\Sigma}_{\Delta W} \]
\[\overset{\text{a.s.}}{=} \hat{\Sigma}_{\hat{\Delta} W} - \frac{1 + o(T^{-1/2})}{\sigma_{DD} + \theta_{\circ}^\circ \Sigma_{UU}' \theta_{\circ}^\circ} \begin{pmatrix} \sigma_{DM}' \\ \Sigma_{UU}' \theta_{\circ}^\circ \end{pmatrix} (1, \theta_{\circ}^\circ) \hat{\Sigma}_{\Delta W}. \]

In a similar way write
\[S^{\circ -1}_{\hat{\Delta} \hat{\Delta}} \hat{\Sigma}_{\hat{\Delta} W} = S^{\circ -1}_{\hat{\Delta} \hat{\Delta}} \mathcal{S}^{\circ -1}_{\hat{\Delta} \hat{\Delta}} \mathcal{S}^{\circ -1}_{\hat{\Delta} \hat{\Delta}} \hat{\Sigma}_{\hat{\Delta} W} \]
\[\overset{\text{a.s.}}{=} S^{\circ -1}_{\hat{\Delta} \hat{\Delta}} \{I_2 - \begin{pmatrix} \sigma_{DM}' \\ \Sigma_{UU}' \theta_{\circ}^\circ \end{pmatrix} \frac{1 + o(T^{-1/2})}{\sigma_{DD} + \theta_{\circ}^\circ \Sigma_{UU}' \theta_{\circ}^\circ} \} (\omega^\circ, \theta_{\circ}^\circ) \hat{\Sigma}_{\hat{\Delta} W}. \]

These expression combine as
\[S^{\circ -1}_{\hat{\Delta} \hat{\Delta}} \hat{\Sigma}_{\hat{\Delta} W} - S^{\circ -1}_{\hat{\Delta} \hat{\Delta}} \hat{\Sigma}_{\hat{\Delta} W} \]
\[\overset{\text{a.s.}}{=} S^{\circ -1}_{\hat{\Delta} \hat{\Delta}} \{1 + o(T^{-1/2})\} \begin{pmatrix} \sigma_{DM}' \\ \Sigma_{UU}' \theta_{\circ}^\circ \end{pmatrix} \{(\omega^\circ, \theta_{\circ}^\circ) \hat{\Sigma}_{\hat{\Delta} W} - (1, \theta_{\circ}^\circ) \hat{\Sigma}_{\Delta W}\}. \quad \text{(B.31)} \]

Noting that, see (B.27),
\[\hat{\Sigma}_{\hat{\Delta} W} = \begin{pmatrix} (1, 0) \\ \hat{\Sigma}_{UU}' \end{pmatrix}, \quad \hat{\Sigma}_{\Delta W} = \begin{pmatrix} (0, 1) \\ \hat{\Sigma}_{UU}' \end{pmatrix}, \]

it is seen that \((\omega^\circ, \theta_{\circ}^\circ) \hat{\Sigma}_{\hat{\Delta} W} - (1, \theta_{\circ}^\circ) \hat{\Sigma}_{\Delta W} = (\omega^\circ, -1) \hat{\Sigma}_{\hat{\Delta} W}\). The expression for \(S^{\circ -1}_{\hat{\Delta} \hat{\Delta}}\) in (B.28) implies
\[S^{\circ -1}_{\hat{\Delta} \hat{\Delta}} \begin{pmatrix} \sigma_{DM}' \\ \Sigma_{UU}' \theta_{\circ}^\circ \end{pmatrix} \]
\[\overset{\text{a.s.}}{=} \left\{ \begin{pmatrix} \sigma_{MM}'^{-1} \\ 0 \end{pmatrix} + \frac{1}{\sigma_{DD\cdot M}'^\circ} \begin{pmatrix} \omega^\circ \\ \theta_{\circ}^\circ \end{pmatrix} \otimes 2 \right\} \left(\begin{pmatrix} \sigma_{DM}' \\ \Sigma_{UU}' \theta_{\circ}^\circ \end{pmatrix} + o(T^{-1/2}) \right) \]
\[= \begin{pmatrix} \omega^\circ \\ \theta_{\circ}^\circ \end{pmatrix} \frac{\sigma_{DD} + \theta_{\circ}^\circ \Sigma_{UU}' \theta_{\circ}^\circ}{\sigma_{DD\cdot M}'^\circ} + o(T^{-1/2}), \]
where \((\omega^0, \theta^0)\mathcal{H}^o = (\omega^0, -1)\tau^o \perp\) by (B.10). Inserting these results in (B.31) shows

\[
\mathcal{H}^{o} \left(S_{RR}^{-1} \hat{\Sigma}_{RW, \Delta} - S_{RR}^{-1} \hat{\Sigma}_{RW} \right)^{a.s.} \tau^{o} \left(\begin{array}{c} \omega^0 \\ -1 \end{array} \right)^{\otimes 2} \sigma_{DD, M}^{-1} \hat{\Sigma}_{eW} \{ 1 + o(T^{-1/2}) \}.
\]

Further, note that \(S_{\epsilon M \epsilon M}^{o} = \sigma_{MM}^{0} + T^{-1/4}\) and \(\hat{\Sigma}_{\epsilon M W} = (1, 0) \hat{\Sigma}_{eW}\) along with the identities (B.29) to see

\[
G S_{MM}^{-1} \hat{\Sigma}_{\epsilon M W} = \sigma_{MM}^{-1} \tau \left(\begin{array}{c} 1 \\ 0 \end{array} \right)^{\otimes 2} \hat{\Sigma}_{eW} \{ 1 + o(T^{-1/2}) \}.
\]

Combining the two last expressions and noting \(\hat{\Sigma}_{eW} = o(T^{1/4-\eta})\) for some \(\eta > 0\) shows

\[
G S_{MM}^{-1} \hat{\Sigma}_{\epsilon M W} + \mathcal{H} \left(S_{RR}^{-1} \hat{\Sigma}_{RW, \Delta} - S_{RR}^{-1} \hat{\Sigma}_{RW} \right)^{a.s.} \tau^{o} \left(\begin{array}{c} \omega^0 \\ -1 \end{array} \right)^{\otimes 2} \sigma_{DD, M}^{-1} \{ 1 + o(T^{-1/4}) \}.
\]

Finally, the desired result follows by the partitioned inversion formula (B.30).

B.5 Improving the rate of consistency

Lemma B.9 Consider the maximum likelihood estimators in model M1DSB. Assume A, B, C. Then \(\hat{R} - R = o(T^{1/4} \rho^{-T})\) a.s.

Proof of Lemma B.9. Lemma B.4 shows that \(\hat{R} - R = o(T^{1/2} \rho^{-T})\). Thus it suffices to analyse the profile likelihood \(\ell(R)\) in a neighbourhood of \(R_o\). Lemma B.6 shows that the profile likelihood \(\ell(R)\) is maximised by maximising \(\tilde{\ell}(R)\) up to an error of order \(o(1)\) uniformly over intervals \(|R - R_o| \leq cT^{1/2} \rho^{-T}\) for any \(c > 0\). Thus, consider the approximate score equation

\[
0 = \tilde{\ell}'(R) = \tilde{\ell}'(R_o) + \tilde{\ell}''(R_o)(R - R_o) + \frac{1}{2} \tilde{\ell}'''(R_o)(R_s - R_o)^2
\]

for some \(R_s\) so \(|R_s - R_o| \leq |R - R_o|\). Thus it holds

\[
R - R_o = \frac{\tilde{\ell}'(R_o) + 2^{-1} \tilde{\ell}'''(R_o)(R_s - R_o)^2}{-\tilde{\ell}''(R_o)}.
\]

(B.32)

Insert the results of Lemma B.7 to get the desired result.
Lemma B.10 Consider the maximum likelihood estimators in model M_{1DSB}. Assume A, B, C. Then
(i) $\hat{R} - R_0 \overset{a.s.}{=} \{-\ell''(R_0)\}^{-1} \tilde{\ell}(R_0) + o(T^{-1/4} \rho_0^{-T}).$
(ii) $\rho_0^T(\hat{R} - R_0) = \mathcal{P}_2(\sum_{t=1}^T \Sigma_{W} \Sigma_{W}^{-1} \{1 + o(1)\} + o(1)).$

Proof of Lemma B.10. (i) Lemma B.9 shows that $\hat{R} - R_0 = o(T^{1/4} \rho^{-T}).$ Insert this and the results of Lemma B.7 into (B.32) to get
$$\hat{R} - R_0 = \{-\ell''(R_0)\}^{-1} \tilde{\ell}(R_0) + \{-2\ell''(R_0)\}^T \tilde{\ell}(R_0)(R_0 - R_0)^2$$
where $|R_0 - R_0| \leq |\hat{R} - R_0|$. The second term is $o(T^{-3/4} \rho_0^{-T})(T^{1/4} \rho_0^{-T})^2 \rho_0^{-2T} = o(T^{-1/4} \rho_0^{-T})$ so (i) follows.
(ii) Insert the expressions in Lemma B.8 into (i) so that
$$\hat{R} - R_0 \overset{a.s.}{=} \frac{\rho_0^T(\tau_0^0 \Sigma_{W}^{-1} \Sigma_{W} + o(T^{-1/4}))}{\rho_0^{2T} \tau_0^0 \Sigma_{W}^{-1} \Sigma_{W}^{-1}} \{1 + o(1)\} + o(\rho_0^{-T}).$$
Rearrange to get the desired result. ■

B.6 Asymptotic distribution of estimators

Theorem B.11 Consider the maximum likelihood estimators in model M_{1DSB}. Assume A, B, C. Then
(i) $\{(\sum_{t=1}^T M_t^2)^{1/2} (\hat{\omega} - \omega^0), (\sum_{t=1}^T U_t^2)^{1/2} (\hat{\theta} - \theta^0)\} \overset{D}{\rightarrow} \mathcal{N}(0, \sigma_{DD,M}^2 I_{2k-1}).$
(ii) $\hat{\sigma}_{MM} \rightarrow \sigma_{MM}, \hat{\sigma}_{DD,M} \rightarrow \sigma_{DD,M} \text{ a.s.}$
(iii) Let $H = (\tau_0^0 \Sigma_{W}^{-1} \Sigma_{W}^{-1})^{-1/2} (\sum_{t=1}^T \rho_0^{2T} \Sigma_{W}^{-1})^{-1/2} (\sum_{t=1}^T \rho_0^{2T} \Sigma_{W}^{-1})^T \rho_0^{2T} \Sigma_{W}^{-1} \Sigma_{W}^{-1} \Sigma_{W}^{-1}$ then it holds
$\{-\ell''(\hat{R})\}^{1/2} (\hat{R} - R_0) = H + o(1)$. a.s.
(iv) If $(\tau_0^0 \Sigma_{W}^{-1} \Sigma_{W}^{-1})^{-1/2} (\sum_{t=1}^T \rho_0^{2T} \Sigma_{W}^{-1})^t \rho_0^{2T}$ are independent $\mathcal{N}(0, 1)$ then H is $\mathcal{N}(0, 1)$.

Proof of Theorem B.11. (i) Since $\hat{\rho} - \rho_0 = o(T^{1/4} \rho_0^{-T})$ by Lemma B.9 and since $\Delta_1 D_t = (\omega^0, \theta^0) \mathcal{R}_t^2 + \varepsilon_{D,M,t}^2$ then Lemma B.2 implies that
$$(\hat{\omega} - \omega^0, \hat{\theta} - \theta^0) (\sum_{t=1}^T \mathcal{R}_t^{\omega^0})^{1/2} = \sum_{t=1}^T \varepsilon_{D,M,t}^2 \mathcal{R}_t^2 \mathcal{R}_t^{\omega^0} \{1 + o(1)\}$$
which is asymptotic normal. Similarly $\sum_{t=1}^T \mathcal{R}_t^{\omega^0} = \sum_{t=1}^T \mathcal{R}_t^2 \{1 + o(1)\}$ where \mathcal{R}_t has asymptotically uncorrelated components $\varepsilon_{D,M,t}^2, U_{t-1}^2$.
(ii) First, consider $\hat{\sigma}_{MM} = \hat{T}^{-1} \sum_{t=1}^T M_t^2$. Since $\hat{\rho} - \rho_0 = o(T^{1/4} \rho_0^{-T})$ by Lemma B.9 then Lemma B.2 implies $\hat{\sigma}_{MM} = \hat{T}^{-1} \sum_{t=1}^T M_t^2 + o(1)$ which has the desired limit.
Secondly, consider \(\hat{\sigma}_{DD,M} = T^{-1} \sum_{t=1}^{T} (\Delta_1D_t|R_t) \). Noting \(\Delta_1D_t = (\omega, \theta_0')R_t^\circ + \varepsilon_{DD,M}^t \) then in the same way Lemma B.2 implies \(\hat{\sigma}_{DD,M} = T^{-1} \sum_{t=1}^{T} \varepsilon_{DD,M}^2 + o(1) \) which has the desired limit.

(iii) Combine Lemmas B.6, B.8, B.10(ii) to see that
\[
\{-\ell''(\hat{R})\}^{1/2}(\hat{R} - R_0) \overset{a.s.}{=} (\tau_{\perp}^\circ \Omega_{\perp}^{-1}\tau_{\perp}^\circ)^{-1/2} \tau_{\perp}^\circ \Omega_{\perp}^{-1} \hat{\Sigma}_{\varepsilon W} \Sigma_{WW}^{-1/2} + o(1),
\]
then \(\rho_0^T(\hat{R} - R_0) = (\tau_{\perp}^\circ \Omega_{\perp}^{-1}\tau_{\perp}^\circ)^{-1} \tau_{\perp}^\circ \Omega_{\perp}^{-1} \hat{\Sigma}_{\varepsilon W} \Sigma_{WW}^{-1/2} \{1 + o(1)\} + o(1) \) a.s. By an argument as in Anderson (1959), see also Nielsen (2010, Theorem 4) then \(H = \hat{\Sigma}_{\varepsilon W} \Sigma_{WW}^{-1/2} = \{\sum_{t=1}^{T} \rho_0^T \tau_{\perp}^\circ \tau_{\perp}^\circ \hat{\Sigma}_{\varepsilon W} \Sigma_{WW}^{-1/2} \}^{-1/2} \sum_{t=1}^{T} \rho_0^T \tau_{\perp}^\circ \tau_{\perp}^\circ + o(1) \) giving the desired result.

(iv) Under the normality assumption then \(H \) is a linear combination of normals, so normal itself. \(\blacksquare \)

B.7 Likelihood in restricted model

Lemma B.12 Consider the maximum likelihood estimators in model \(\mathbf{M}_{1DSB} \). Assume A, B, C. Then
\[
2\ell(\hat{R}) \overset{a.s.}{=} -T \log \det(S_{\varepsilon \varepsilon}^\circ) + \sigma_{DD,M}^{-1} \hat{\Sigma}_{\varepsilon D,M} \Sigma_{UU}^{-1} \hat{\Sigma}_{U\varepsilon D,M}
+ \text{tr}(\Omega_{\perp}^{-1} \rho_0^T \hat{\Sigma}_{\varepsilon W} \Sigma_{WW}^{-1/2} \hat{\Sigma}_{\varepsilon W}) + o(1).
\]

Proof of Lemma B.12. The profile log likelihood is given in Lemma B.6 as
\[
2\{\ell(\hat{R}) - \ell(R_0)\} = 2\{\ell(\hat{R}) - \ell(R_0)\} + o(1).
\]
(B.33)

Expanding \(\ell(\hat{R}) \) around \(R_0 \) then gives
\[
2\{\ell(\hat{R}) - \ell(R_0)\} = 2\ell(\hat{R}_0)(\hat{R} - R_0) + \ell''(R_0)(\hat{R} - R_0)^2 + \frac{1}{3} \ell'''(R_0)(\hat{R}_* - R_0)^3.
\]
where \(|\hat{R}_* - R_0| \leq |\hat{R} - R_0| \). Insert the expression for \(\hat{R} - R_0 \) from Lemma B.10(i) and use the bound \(\hat{R} - R_0 = o(T^{1/4} \rho_0^T) \) from Lemma B.4 to get
\[
2\{\ell(\hat{R}) - \ell(R_0)\} \overset{a.s.}{=} -\{\ell''(R_0)\}^{-1} \{\ell'(R_0)\}^2
+ o\{T^{-1/4} \rho_0^T \ell'(R_0) + \rho_0^{-2T} \ell''(R_0) + T^{3/4} \rho_0^{-3T} \ell'''(R_0)\}.
\]
Insert the bounds and the expressions for the derivatives established in Lemmas B.7, B.8 to see
\[
2\{\ell(\hat{R}) - \ell(R_0)\} \overset{a.s.}{=} -\frac{\rho_0^{2T} \{\tau_{\perp}^\circ \Omega_{\perp}^{-1} \hat{\Sigma}_{\varepsilon W} + o(T^{-1/4})\}^2}{\rho_0^{2T} \tau_{\perp}^\circ \Omega_{\perp}^{-1} \tau_{\perp}^\circ \Sigma_{\varepsilon W}^{-1/2}} + o(1).
\]
Noting that $\hat{\Sigma}_{WW} = o(T^{1/4})$ this reduces to
\[
2\{\tilde{\ell}(\hat{R}) - \tilde{\ell}(R_0)\} \overset{a.s.}{=} -(\tau_0^0 \Omega_1^{-1} \tau_0^0)^{-1} \tau_0^0 \Omega_1^{-1} \hat{\Sigma}_{WW} \Sigma_0^{-1} \Sigma_0^{-1} W \Sigma_0^{-1} \tau_0^0 + o(1).
\]

Taking trace and rearranging shows
\[
2\{\tilde{\ell}(\hat{R}) - \tilde{\ell}(R_0)\} \overset{a.s.}{=} \text{tr}(\Omega_1^{-1} P_{\tau_1} \hat{\Sigma}_{WW} \Sigma_0^{-1} \Sigma_0^{-1} W \Sigma_0^{-1}) + o(1)
\]
Insert this in (B.33) and use the expression for $2\ell(R_0)$ in Lemma B.3.

B.8 Likelihood in unrestricted model

The unrestricted model M_{1D} is now analysed. The analysis of Nielsen (2010) needs to be elaborated. In particular, improved convergence results are needed for the estimator of the adjustment parameters $\alpha = (\alpha_1, \alpha_2, \Phi_1, \ldots, \Phi_{k-2})$ and for Ω. Given the estimators $\hat{\rho}_D, \hat{\beta}_1^D$ the maximum likelihood estimator for α is found by regression of $\Delta_1 \Delta_{\rho_D} X_t$ on

\[
U_t^D = (\hat{\beta}_1^D \Delta_{\rho_D} X_{t-1}, \beta_0^D \Delta_1 X_{t-1}, \Delta_1 \Delta_{\rho_D} X_{t-1}, \ldots, \Delta_1 \Delta_{\rho_D} X_{t-k+2})'
\]

For the results of this subsection the data generating process is

\[
\Delta_1 \Delta_{\rho_D} X_t = \alpha_1^0 \Delta_{\rho_D} X_{t-1} + \alpha_0^0 \beta_0^0 \Delta_1 X_{t-1} + \sum_{j=1}^{k-2} \beta_j^0 \Delta_1 \Delta_{\rho_D} X_{t-j} + \varepsilon_t^0.
\]

This of course encompasses the data generating process (B.7) under M_{1DSB}.

Lemma B.13 Suppose M_{1D} holds with $\rho_0 \geq \rho$ for some $\rho > 1$. Assume A, B, C. Recall the definitions of $\tau_1^0, P_{\tau_1}, P_0$ in (B.8), (B.9). Then

(i) $\hat{\alpha} - \alpha = T^{-1/2} \hat{\Sigma}_{UU}^{-1} U_{UU} + o_p(T^{-\xi}) = o_p(T^{-1/2}).$

(ii) $\alpha_1^0 (\hat{\beta}_1^D - \beta_1^D) / \hat{\Sigma}_{IV}^0 \hat{N}_V^{-1} = T^{-1/2} P_0 \hat{\Sigma}_{IV}^0 \hat{N}_V^{-1} + o_p(T^{-1/2}) = o_p(T^{-1/2}).$

(iii) $\rho_0^{-T} \tau_{\tau_1}^D \sum_{t=1}^{T} \hat{\varepsilon}_t^D W_{t-1}^0 = \rho_0^{-T} \tau_{\tau_1}^D \sum_{t=1}^{T} \varepsilon_t^D W_{t-1}^0 + o_p(1).$

(iv) $\hat{\Omega}_D - \Omega_0 = T^{-1} \sum_{t=1}^{T} ((\varepsilon_t^0)^{\otimes 2} - \Omega_0) + o_p(T^{-1/2}) = o_p(T^{-1/2}).$

(v) $\tau_1^0(\hat{\rho}_D - \rho_0) = P_{\tau_1} \sum_{t=1}^{T} \hat{\varepsilon}_t^D W_{t-1}^0 \{ \sum_{t=1}^{T} (W_{t-1}^0)^2 \}^{-1} \{ 1 + o_p(T^{-1/2}) \} + o_p(T^{-1/4} \rho_0^{-T}).$

28
Proof of Lemma B.13. Product moments. Let V_{t-1}^D denote V_t computed at $\hat{\rho}$. Combine (A.12) and the first display on p.911 of Nielsen (2010) to get

$$
\begin{pmatrix}
\hat{S}_{UU} & \hat{S}_{UV} & \hat{S}_{UW} \\
* & \hat{S}_{VV} & \hat{S}_{VW} \\
* & * & \hat{S}_{WW}
\end{pmatrix} = \frac{1}{T} \sum_{t=1}^{T} \begin{pmatrix}
U_{t-1}^D \\
N_t V_{t-1}^D \\
N_t W_{t-1}^o
\end{pmatrix} \otimes^2
$$

(B.34)

where $\hat{S}_{VW} = \rho_0 T \sum_{t=1}^{T} W_{t-1}^o \hat{e}_t^o$, $\hat{S}_{UV} = T^{-1/2} \sum_{t=1}^{T} U_{t-1}^o \hat{e}_t^o$, $\hat{S}_{VW} = T^{-1/2} N_t \sum_{t=1}^{T} V_{t-1}^o \hat{e}_t^o$, and $\hat{S}_{VV} = T^{-1} \sum_{t=1}^{T} (N_t V_{t-1}^o) \otimes^2$.

(i) An equation shown in the proof of Lemma A.7 of Nielsen (2010) gives

$$
\Delta_1 \Delta_2 X_t = \hat{e}_t^o + (\alpha + \hat{\beta}_U) U_{t-1}^D + \hat{\beta}_V N_t V_{t-1}^D + \hat{\beta}_W W_{t-1}^o,
$$

(B.35)

where $\hat{\beta}_U = (\rho_D - \rho_o) \{ (1/\rho_D) - \hat{\psi}_D^{\beta} \beta_1, \hat{\psi}_D^{\beta} \beta_1, \hat{\psi}_D^{\beta} \beta_1, \hat{\psi}_D^{\beta} \beta_1, \hat{\psi}_D^{\beta} \beta_1 \}$ and $\hat{\beta}_V = \alpha_1 \beta_1 \beta_1 \rho_D^{\beta_1} N^{-1} (1 - \rho_o)/(1 - \rho_D)$ and $\hat{\beta}_W = -(\rho_D - \rho_o) \beta_1$. It follows that

$$
\hat{\alpha} - \alpha = \sum_{t=1}^{T} \hat{e}_t^o (U_{t-1}^D)' \{ \sum_{t=1}^{T} (U_{t-1}^D) \otimes^2 \}^{-1}
$$

$$
+ \hat{\beta}_U + \sum_{t=1}^{T} (\hat{\beta}_V N_t V_{t-1}^D + \hat{\beta}_W W_{t-1}^o)(U_{t-1}^D)' \{ \sum_{t=1}^{T} (U_{t-1}^D) \otimes^2 \}^{-1}.
$$

Lemma A.11 of Nielsen (2010) shows that $T^{1/2} \rho_0^T (\hat{\rho}_D - \rho_o)$ and $\beta_1 \rho_0^T \beta_1 \beta_1 N^{-1}$ are $\text{op}(T^{-1/2})$. This implies that $\hat{\beta}_U, \hat{\beta}_W = \text{op}(\rho_0 T^{(1-\xi)/2})$ and $\hat{\beta}_V = \text{op}(T^{-\xi/2})$. From (B.34) it follows that

$$
\hat{\beta}_U - \beta_1 = \{ T^{1/2} \rho_0^T (\hat{\rho}_D - \rho_o) + \text{op}(T^{1/2}) \} \{ \sum_{t=1}^{T} (U_{t-1}^D) \otimes^2 \}^{-1}
$$

$$
+ \rho_D T^{(1-\xi)/2} + \text{op}(T^{1/2}) \text{op}(T^{-\xi/2}) + \rho_0 T^{(1-\xi)/2} \text{op}(T^{-1/2} T^{(1-\xi)/2}) \rho_0 T^{(1-\xi)/2}.
$$

By Assumption B then $\xi > 1/2$ and the desired result follows.

(ii, iii) Statement of Lemma A.12(ii, iii) of Nielsen (2010).

(iv) The variance estimator is $\hat{\Omega}_D = T^{-1} \sum_{t=1}^{T} (\hat{\Delta}_1 \hat{\Delta}_2 X_t)' (U_{t-1}^D) \otimes^2$. Due to (B.35) then

$$
\hat{\Omega}_D = T^{-1} \sum_{t=1}^{T} (\hat{e}_t^o + \hat{\beta}_V N_t V_{t-1}^D + \hat{\beta}_W W_{t-1}^o)' (U_{t-1}^D) \otimes^2.
$$
From \((ii, iii)\) it follows that \(\hat{\delta}_V = -T^{-1/2}P^\alpha_a \hat{\Sigma}_{eV} \hat{\Sigma}_{V}^{-1} + o_p(T^{-\xi}) = O_p(T^{1/2})\). Inserting this and using \((B.34)\) it follows that \(\hat{\Omega}_D = S_{ee}^{\alpha} + T^{-1}G\) where

\[
G = -\Sigma_{eU} \Sigma_{U}^{-1} \Sigma_{ue} + o_p(1) + \hat{\delta}_W o_p(\rho_o T^{-1-\xi/2}) + P^\alpha a \hat{\Sigma}_{eV} \hat{\Sigma}_{V}^{-1} \hat{\Sigma}_{eV} P^\alpha a - P^\alpha a \hat{\Sigma}_{eV} \hat{\Sigma}_{V}^{-1} \hat{\Sigma}_{eV} - \hat{\Sigma}_{eV} \hat{\Sigma}_{V}^{-1} \hat{\Sigma}_{eV} P^\alpha a + \hat{\delta}_W \hat{\Sigma}_{WW} \hat{\delta}_W \{1 + o_p(T^{-1/2})\} + \rho_o^{-2} (\hat{\delta}_W \hat{\Sigma}_{W} + \hat{\Sigma}_{WW} \hat{\delta}_W).
\]

Since \(\hat{\delta}_W = o_p(\rho_o^{-1}T^{1-\xi/2})\), \(\hat{\Sigma}_{WW} = O(1)\) and \(\Sigma_{W} = o_p(T^{1-\xi/2})\) and \(\xi > 1/2\) then

\[
G = -\Sigma_{eU} \Sigma_{U}^{-1} \Sigma_{ue} + P^\alpha a \hat{\Sigma}_{eV} \hat{\Sigma}_{V}^{-1} \hat{\Sigma}_{eV} P^\alpha a - P^\alpha a \hat{\Sigma}_{eV} \hat{\Sigma}_{V}^{-1} \hat{\Sigma}_{eV} - \hat{\Sigma}_{eV} \hat{\Sigma}_{V}^{-1} \hat{\Sigma}_{eV} P^\alpha a + \hat{\delta}_W \hat{\Sigma}_{WW} \hat{\delta}_W + \rho_o^{-2} (\hat{\delta}_W \hat{\Sigma}_{W} + \hat{\Sigma}_{WW} \hat{\delta}_W) + o_p(1),
\]

and \(G = o_p(T^{1/2})\). It follows that \(\hat{\Omega}_D = S_{ee}^{\alpha} + o_p(T^{-1/2})\). Since \(S_{ee}^{\alpha} = \Omega_1 + o_p(T^{-1/2})\) the desired result follows.

\((v)\) Lemma A.9 of Nielsen (2010) shows

\[
\tau_\perp D^\alpha \hat{\Omega}_D (\hat{\rho}_D - \rho_o) (\hat{\tau}_\perp D^\alpha \hat{\Sigma}_{WW} - \hat{P}_a \hat{\tau}_\perp D^\alpha \hat{\Sigma}_{VV} \hat{\Sigma}_{V}^{-1} \hat{\Sigma}_{VV} \hat{\Sigma}_{V}^{-1}) = T^{1/2} \tau_\perp D^\alpha \hat{\Omega}_D^{-1} (\hat{\Sigma}_{WW} - \hat{P}_a \hat{\Sigma}_{VV} \hat{\Sigma}_{V}^{-1} \hat{\Sigma}_{VV} \hat{\Sigma}_{V}^{-1})\]

where \(\hat{P}_a = \hat{\alpha}_1 (\hat{\alpha}_1 D^\alpha \hat{\Omega}_D)^{-1} \hat{\alpha}_1 D^\alpha \hat{\Omega}_D^{-1}\). Exploit the \(T^{1/2}\)-order of the \(\rho, \alpha, \tau, \Omega\) estimators by \((i, iii)\) as well as premultiplying the equation by \(\tau_\perp O_1 (\tau_\perp \Omega_1^{-1} \tau_\perp)^{-1}\) and post-multiplying by \(\hat{\Sigma}_{WW}^{-1}\) to get

\[
\tau_\perp D^\alpha \hat{\rho}_D - \rho_o = \{\rho_o (\hat{\rho}_D - \rho_o) \tau_\perp D^\alpha \hat{\Sigma}_{WW} \hat{\Sigma}_{V}^{-1} \hat{\Sigma}_{VV} \hat{\Sigma}_{V}^{-1} \hat{\Sigma}_{WW} \hat{\Sigma}_{V}^{-1} \hat{\Sigma}_{VV} \hat{\Sigma}_{V}^{-1}\}
\]

Exploit the \(T^{-1/4} \rho_o^{-1}\) consistency of \(\hat{\rho}_D\) as well as \((B.35)\) to get the desired result. ■

An expansion is needed for the variance estimator \(\hat{\Omega}_D\) in the unrestricted model \(M_{1D}\). Theorem 3 of Nielsen (2010) shows that the estimator \(\hat{\Omega}_D\), called \(\hat{\Omega}_H\) in that paper, is consistent.

Lemma B.14 Suppose \(M_{1D}\) holds with \(\rho_o \geq \rho\) for some \(\rho > 1\). Assume \(A, B, C\). Then

\[
2 \hat{\lambda}_{1D} = -T \log \det S_{e\epsilon e} + \text{tr}(\Omega_1^{-1} \hat{\Sigma}_{UU} \hat{\Sigma}_{Ue}^{-1} \hat{\Sigma}_{UU}^{-1}) + \text{tr}(\Omega_1^{-1} \hat{P}_a \hat{\Sigma}_{eV} \hat{\Sigma}_{VV}^{-1} \hat{\Sigma}_{V}) + \text{tr}(\Omega_1^{-1} \hat{P}_\perp \hat{\Sigma}_{WW} \hat{\Sigma}_{W}^{-1} \hat{\Sigma}_{W}) + o_p(1).
\]

30
Proof of Lemma B.14. Combine (B.36) where \(\delta_W = -(\hat{\rho_D} - \rho_o) \frac{\pi_{ID}}{\pi_{I \perp}} \) with Lemma B.13(e) to get \(\hat{\Delta} = S_{\varepsilon \varepsilon_{\theta}} + T^{-1}G \) where

\[
G = -\hat{\Sigma}_{\varepsilon U} \Sigma_{UU}^{-1} \hat{\Sigma}_{U\varepsilon} + \mathcal{P}_{\alpha} \hat{\Sigma}_{\varepsilon V} \Sigma_{VV}^{-1} \hat{\Sigma}_{V\varepsilon} + \mathcal{P}_{\tau \perp} \hat{\Sigma}_{\varepsilon W} \Sigma_{WW}^{-1} \hat{\Sigma}_{W\varepsilon} + \mathcal{P}_{\rho} \hat{\Sigma}_{\varepsilon D} \Sigma_{DD}^{-1} \hat{\Sigma}_{D\varepsilon} - \hat{\Sigma}_{\varepsilon V} \Sigma_{VV}^{-1} \hat{\Sigma}_{V\varepsilon} \mathcal{P}_{\alpha} + \mathcal{P}_{\tau \perp} \hat{\Sigma}_{\varepsilon W} \Sigma_{WW}^{-1} \hat{\Sigma}_{W\varepsilon} - \hat{\Sigma}_{\varepsilon W} \Sigma_{WW}^{-1} \hat{\Sigma}_{W\varepsilon} \mathcal{P}_{\tau \perp} + \text{op}(1).
\]

Use the log determinant expansion in Lemma B.5 to get

\[
2\hat{\ell}_{1D} = -T \log \det \hat{\Delta} = -T \log \det S_{\varepsilon \varepsilon_{\theta}} - \text{tr}(\hat{\Delta}^{-1}G).
\]

Since \(\hat{\Delta} \) is consistent and \(\mathcal{P}_{\alpha} \Omega^{-1} \mathcal{P}_{\alpha} = \Omega^{-1} \mathcal{P}_{\alpha} \) and \(\mathcal{P}_{\alpha} \Omega^{-1} \mathcal{P}_{\alpha} = \Omega^{-1} \mathcal{P}_{\alpha} \) and using the symmetry of the trace then

\[-\text{tr}(\hat{\Delta}^{-1}G) = \text{tr}\{\Omega^{-1} (\hat{\Sigma}_{\varepsilon U} \Sigma_{UU}^{-1} \hat{\Sigma}_{U\varepsilon} + \mathcal{P}_{\alpha} \hat{\Sigma}_{\varepsilon V} \Sigma_{VV}^{-1} \hat{\Sigma}_{V\varepsilon} + \mathcal{P}_{\tau \perp} \hat{\Sigma}_{\varepsilon W} \Sigma_{WW}^{-1} \hat{\Sigma}_{W\varepsilon}) + \text{op}(1).\]

Insert this in the expression for \(2\hat{\ell}_{1D} \) to get the desired result. \(\blacksquare \)

B.9 Proof of main theorem

Proof of Theorem 3.3. It holds that

\[
\text{LR}(\mathcal{M}_{D\perp SB} \mid \mathcal{M}_{1D}) = 2\hat{\ell}_{1D} - 2\hat{\ell}_{1DSB}
\]

Inserting results from Lemmas B.12, B.14 gives

\[
\text{LR} = \{-T \log \det S_{\varepsilon \varepsilon_{\theta}} + \text{tr}(\Omega^{-1} \hat{\Sigma}_{\varepsilon U} \Sigma_{UU}^{-1} \hat{\Sigma}_{U\varepsilon}) + \text{tr}(\Omega^{-1} \mathcal{P}_{\alpha} \hat{\Sigma}_{\varepsilon V} \Sigma_{VV}^{-1} \hat{\Sigma}_{V\varepsilon}) \}
+ \text{tr}(\Omega^{-1} \mathcal{P}_{\tau \perp} \hat{\Sigma}_{\varepsilon W} \Sigma_{WW}^{-1} \hat{\Sigma}_{W\varepsilon}) \} - \{-T \log \det(S_{\varepsilon \varepsilon_{\theta}}) + \sigma_{DD,M\perp D,M} \Sigma_{UU}^{-1} \Sigma_{U\varepsilon_{D,M}} + \text{tr}(\Omega^{-1} \mathcal{P}_{\alpha} \hat{\Sigma}_{\varepsilon V} \Sigma_{VV}^{-1} \hat{\Sigma}_{V\varepsilon}) + \text{op}(1).
\]

This reduces to

\[
\text{LR} = \text{tr}(\Omega^{-1} \hat{\Sigma}_{\varepsilon U} \Sigma_{UU}^{-1} \hat{\Sigma}_{U\varepsilon}) - \sigma_{DD,M\perp D,M} \Sigma_{UU}^{-1} \Sigma_{U\varepsilon_{D,M}} + \text{tr}(\Omega^{-1} \mathcal{P}_{\alpha} \hat{\Sigma}_{\varepsilon V} \Sigma_{VV}^{-1} \hat{\Sigma}_{V\varepsilon}) + \text{op}(1).
\]

In the first term partitioned inversion of \(\Omega^{-1} \) gives

\[
\text{tr}(\Omega^{-1} \hat{\Sigma}_{\varepsilon U} \Sigma_{UU}^{-1} \hat{\Sigma}_{U\varepsilon}) = \sigma_{MM_{\perp M} U} \Sigma_{UU}^{-1} \Sigma_{U\varepsilon_{M}} + \sigma_{DD,M\perp D,M} \Sigma_{UU}^{-1} \Sigma_{U\varepsilon_{D,M}}
\]

so the test statistic satisfies

\[
\text{LR} = \sigma_{MM_{\perp M} U} \Sigma_{UU}^{-1} \Sigma_{U\varepsilon_{M}} + \text{tr}(\Omega^{-1} \mathcal{P}_{\alpha} \hat{\Sigma}_{\varepsilon V} \Sigma_{VV}^{-1} \hat{\Sigma}_{V\varepsilon}) + \text{op}(1).
\]
Since $\varepsilon_{M,t}, U_{t-1}$ are mutually independent a martingal central limit theorem, see Brown and Eagleson (1971), gives that the first term is asymptotically χ^2 with $\dim U = 2k - 2$ degrees of freedom.

The term $\mathcal{P}_c^\alpha \Sigma_{\varepsilon V}$ is the stochastic integral of $B_{1,t,T} = N_{t-1} V_{t-1}^c$ with respect to $c = T^{-1/2} \sum_{s=1}^{t} \alpha_1^{-1} \Omega_1^{-1} \varepsilon_s$. The process $B_{1,t,T}$ is a function of $T^{-1/2} \sum_{s=1}^{t} \alpha_1^{-1} \Omega_1^{-1} \varepsilon_s$. Thus, $B_{1,t,T}$ and $B_{1,t,T}$ converge to asymptotically independent processes, so by a mixed Gaussian argument, see Johansen (1995, §13.1), the last term is χ^2 with $\dim(\alpha_1^{-1} \Omega_1^{-1} \varepsilon_t) \dim(V) = 2$ degrees of freedom.

It is left to argue that the last term is asymptotically independent of the previous two. The last one is based on the processes $B_{1,t,T}, B_{1,t,T}$ which are asymptotically independent of $\hat{\Sigma}_{\varepsilon M}, \hat{\Sigma}_{\varepsilon M}, \hat{\Sigma}_{\varepsilon M}$, see Chan and Wei (1988, Theorem 2.2). Since $\hat{\Sigma}_{eV}, \hat{\Sigma}_{VV}$ are functionals of $B_{1,t,T}, B_{1,t,T}$ then $\hat{\Sigma}_{eV}, \hat{\Sigma}_{VV}$ are asymptotically independent of $\hat{\Sigma}_{\varepsilon M}, \hat{\Sigma}_{\varepsilon M}$.

It then follows that LR is asymptotically χ^2 with $(2k - 2) + 2 = 2k$ degrees of freedom.

References

