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Abstract

A vector autoregressive model (VAR) is estimated, and restrictions pertaining to a
dynamic stochastic general equilibrium (DSGE) model are imposed in the cointegrated
vector autoregressive framework showing that the theoretical restrictions can not be ac-
cepted. Comparing impulse response functions from the theoretical model and the re-
stricted empirical model shows that the results from the theoretical model are not found
in the data.
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1 Introduction

A vector autoregressive model (VAR) is estimated, and steady state properties of a theoretical
dynamic stochastic general equilibrium (DSGE) model is tested in the VAR through the
cointegrated VAR (CVAR) framework. These properties are not accepted, indicating that
the theoretical steady state is not found in the long-run properties of the data. Impulse
response functions from the CVAR and the DSGE model are also analyzed, indicating that
the data does not seem to be able to recover the results from the theoretical model. The
approach of testing relationships in a DSGE model using the CVAR framework is conducted
along the lines of Juselius and Franchi (2007).

Specifically, the DSGE model in Tacoviello (2005) is used as a theoretical model. This
model includes housing in a new Keynesian model by including nominal debt contracts and
collateral constraints tied to housing values. One of the key relationships described by the
model in steady state is that there should be a constant relationship between output and
housing prices. This is clearly not found in the data for the period used in the estimation in
Tacoviello (2005).
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Iacoviello (2005) investigates the impulse response functions for a four-equation VAR
model estimated using minimum distance estimation for the impulse response functions, and
compare them to impulse response functions an unrestricted VAR using filtered variables.
This paper extends the analysis by investigating the impulse response functions of a CVAR
model, which will combine the estimated VAR with the theoretical DSGE model in Tacoviello
(2005).

I start by estimating an unrestricted VAR using the same variables as in Iacoviello (2005),
but instead of using variables that are filtered through the Band Pass filter, I use the variables
in logs prior to filtering. This avoids drawbacks of using filtered variables, e.g. that the filter
removes information in the data. None of the variables are stationary (tests are shown in
table 10), which motivates estimation using cointegration, since steady state relationships
often indicate stationary ratios between variables, which is equivalent to stationary linear
combinations of variables as indicated by cointegration if logs of variables are used.!

The next section gives a brief description of the theoretical DSGE model and how the
relationships between the theoretical variables may be represented by the cointegrated VAR
model and a moving average representation. Section 3 presents the estimated model and how
restrictions from the theoretical model may be imposed on it, while section 4 tests the hy-
potheses pertaining to the long-run relations implied by the theoretical model. Then, section
5 shows the estimated moving average representation and section 6 presents the structural
moving average model and the impulse response functions that follows and compare these to
the impulse response functions given by Iacoviello (2005). The final section concludes.

2 Theoretical model

The theoretical model investigated in this paper is, the DSGE model in Iacoviello (2005)
which incorporates the financial accelerator by using the housing as an important financial
asset. The model is mainly taken from Bernanke et al. (1999), in addition to adding collateral
constraints tied to real estate values for firms as in Kiyotaki and Moore (1997) and including
nominal debt contracts.

The theoretical steady-state relations implied by the model should be found in the long-
run properties of the data, which may be investigated through the cointegrated VAR model.
These theoretical relationships can be rearranged in order to get equations that explain a
relationship between the observed variables used in the estimated VAR and CVAR model.

2.1 The agents in the model economy

The DSGE model in Tacoviello (2005) contains an economy populated by patient households
(their variables are denoted with a prime as superscript), impatient households (denoted with
a double prime), entrepreneurs (denoted without any primes), retailers and a central bank.?

'The log of a ratio is the same as the differences between the log of the variables in the ratio, e.g. In(y/z) =
Iny — Inz.

2Tacoviello (2005) introduces both a ”basic” and a ”full” model, where the latter contains an impatient
household sector in addition to the patient households as well as allowing for variable capital investment for
the entrepreneurs. The full model is considered here.



Patient households maximize a lifetime utility function

EyY  B'(Inci + jlnh; — (Ly)"/n + xIn(M{/P,)),
t=0

where 8 € (0,1) is the discount factor, ¢, is consumption at time ¢, hj is the holding of
housing, L} are hours work and M//P, are money balances divided by the price level. j is a
preference parameter related to housing, 77 measures the labor supply aversion and y measures
the preference for holding money, s.t.

C;/ + thhg + Rt—lb:‘/fl/ﬂ't = b; + ’U)QLQ + Ft + Tt/ — AM;/Pt,

where ¢ = Q;/P; denotes the real housing price, w, = W/ /P; the real wage and b, = Bj]/P;
denotes the amount borrowed in real terms where they pay back R;_1B;_;/P; where R;_; is
the gross nominal interest rate on loans between period t — 1 and t. 7y = P,/P;_1 is the gross
inflation rate, F} are lump-sum profits received from the retailers and T, are net transfers
from the central bank financed by printing money Mj.

The impatient households are assumed constrained and maximize

Eo > (8" (Iné) + jelnh) — (L) + xIn M}/ P,)
t=0

where 8 < 8 which guarantees that they will hit the borrowing constraint in equilibrium.
All variables are as for the patient households except that the variables pertaining to the
impatient households are denoted by a double instead of a single prime as superscript. This
is maximized s.t.

&+ AR + Ry_1b) Jmp =V +wi LY + T — AM]' /P, — &y,

where &+ = ¢n(ARY/h)_,)*q:h}_,/2 is a housing adjustment cost such that households are
not perfectly mobile. The borrowing limit is given as

by < m"Ey(g1himei1/Re),

where m” is the loan-to-value ratio for the impatient households.
Entrepreneurs produce an intermediate good Y; according to a Cobb-Douglas constant
returns-to-scale technology

Yi = AR by L) =iz,

where A is random technology, K is capital and L’ and L” are the labor from the patient and
the impatient households, respectively. They maximize

o0
EoY ~'loge
t=0

where v < 3, s.t.

Y/ Xt + b = et + @ Ahy + Ry—1bi—/m +wi Ly + wi LY + I + Eet + Exct



by = mEy(quy1himigr/Ry)

and technology, where & ; = be(Ahg/hy—1)*qths—1/2 and €t = V(I /K — 8)2Ky_1/(26)
are adjustment costs for housing and capital, respectively.

The retailers buy intermediate goods Y; from entrepreneurs, differentiate them and sell
them. This imposes sticky prices in the model and the New Keynesian Phillips curve in the
log-linearized model. )

7y = Birpp1 — KXy + 1y,

where X; = P,/P}” is a markup of final over intermediate goods since P;” is the wholesale price
and P, is the final good price index. The hat over a variable implies the percentage deviation
from its steady state, i.e. approximated by log deviation, and u; expresses an inflationary
shock.
The central bank follows a Taylor-type interest rate rule, which is log-linearly expressed
as X R )
Ry = (1 —=7rg)(L+rz)ft—1 +7ryYi1) + 7rREi—1 + ERy,

where rg, rr and ry are coefficients in the Taylor rule pertaining to past interest rate, inflation
and output in deviation from steady state, respectively. ér; corresponds to a monetary policy
shock.

The first-order condition for debt for the patient households that maximizes their lifetime
utility function is

1 1 R
- = 5Et,77t7
Ct Cig1 Ti+1
which in steady state yields
7r
= —. 1
== (1)

In steady state, gross inflation, 7, is assumed equal to unity, such that we have a zero-inflation
steady state, where

(2)

which indicates that the nominal interest rate is stationary in the steady state and the gross
nominal interest rate equals (1/0).
The entrepreneurs’ first-order condition for housing when they maximize their lifetime

utility is

q Yit1

A <fy <V S Qt+1) + Atmﬁtﬂqﬂrl) ;
ct cir1 \ Xegpihyg

which in steady state becomes
1 Y1
S=4i 4 ==+ A . 3
C ’yc+c’yVXh+ mmq (3)
We also have the following first-order condition for debt for the entrepreneurs:
1 R
— =EBy———— + MRy
Ct Ct4+1T¢+1

which in steady state is

1
A= — —

=



Inserting this into the steady state of the first-order condition for housing, (3), we get

q 004 1
- = _— 4
Y 1-y—(5—7)mXh )

We should also insert for the housing stock, h, which depends on R and 7 and a combina-
tion of various parameters as shown in the technical appendix of Tacoviello (2005) where an
expression for h may be found after calculating various first-order conditions for the agents
in the economy. Using various equations, we obtain an expression for the steady state of the
housing stock. Inserting this yields the following steady state relationship:
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We would like to express a linear relationship between house prices, output, the nominal
interest rate and inflation. This may be done by taking logs on each side of (5) and a
first-order Taylor approximation such that 5 = (7/R) is also expressed linearly. This yields

Ing=mY +a+b(n/R), (6)

where a and b consists of a combination of a number of different parameters. (6) then suggests
a linear combination between log of house prices, log of output and (7/R). Since 7 is the
gross inflation rate and R is the gross nominal interest rate, (w/R) is the inverse of the gross
real interest rate, following the Fisher equation (Fisher, 1930).

The steady state relationship expressed in (6) may be related to the statistical concepts of
the CVAR model, through the cointegrating relations. If the data for the variables expressed
in (6) are non-stationary, a cointegrating relation should explain a stationary relationship
between these non-stationary variables.

In the data set used for the estimation, the nominal interest rate and the inflation rate
differs from its theoretical counterparts m and R since the theoretical model uses the gross
nominal interest rate and inflation, whereas the data set contains net nominal interest rate
and net inflation. The steady state relationship (7/R) may be defined as

1 + Rnet

real,net __
L+ R - 1 4 gnet ’

Rreabmet - pnet and 7€ are net real interest rate, net nominal interest rate and net

nel are small, be approximated to

where
inflation, respectively. This may, assuming R"¢* and 7

real,net ., pnet net
RN o RN — e

such that the difference between net nominal interest rate and net inflation also expresses the
Fisher relationship.



Furthermore, we may approximate (7/R), assuming R" and 7! are small, to (1+7"¢ —

R"™")3 such that we may rewrite (6) in order to match the nominal variables (corresponding
to the variables in the data set to be defined below) to

Ing=MmnY +a—b(R"" — 7", (7)

where oo = (a+b). This yields an inverse housing demand equation in which housing demand
depends positively on aggregate output and negatively on the real interest rate, given b > 0.
This condition is fulfilled, since b = 1.28 assuming j = 5/ = 7/ = 0.1 and using the estimated
parameter values in Iacoviello (2005).

2.2 Theoretical implications for the cointegrated VAR model

In order to relate (7) to the cointegrating relations in the CVAR model, the choice of rank for
the model determines how we should make the connection between the theoretical and the
statistical model. The rank determines the number of cointegrating relations, which implies
how many stationary relationships that exists in the data.

According to the theoretical model and the relationship in (7), we have a stationary
relationship between all four observable variables. If we consider output and housing prices
to be non-stationary and driven by the same stochastic trend, and the nominal interest rate
and inflation to be stationary, as shown by the theoretical model in (1) and (2), we may set
the rank to r = 3 since any stationary linear combination is called a cointegrating relation
(Liitkepohl and Krétzig, 2004). A relationship between housing prices and output, as well
as stationarity of the nominal interest rate and inflation should then be expected as three
cointegrating relationships. This corresponds to the following three cointegrating relations:

Ing —InY; ~ 1(0)
R, ~ 1(0)
WtNI(O)v (8)

which implies one common stochastic trend which drives housing prices and output.

If we consider the nominal interest rate and inflation to be non-stationary (which is the
case for the observed variables in the sample), we obtain a different interpretation of the
theoretical long-run relationship. From (7), we see that if the nominal interest rate and the
inflation rate is non-stationary, there should be a long-run relationship between all of the
four observable variables that is stationary in the long run, and three common driving trends
shuold drive the model. This yields the following cointegrating relation when setting the rank
tor=1:

lnqt—lnY}—a—i-b(Rt—ﬂ't)NI(O). (9)
If there is a stationary long-run relationship between the nominal interest rate and infla-
tion, this could constitute a separate cointegration vector such that the rank should be set to
r = 2, yielding
Ing —InY; ~ 1(0)
Rt—ﬂ'tNI(O). (]_O)

net _pnety2

net net
3111( 14w ) ~ ﬂnet _Rnet = 14w _ eXp{ﬂ'net _Rnet} ~ 1+ﬂ_net _Rnet + (7 =

~ net net
1+Rnet 1+Rmet ~ 1+7T' —R




The hypotheses pertaining to (8), (9) and (10) may be tested statistically through the
cointegrating relationships in the estimated CVAR model.

2.3 MA representation

The MA representation of the VAR model is useful for formulating assumptions underlying
the DSGE model in Iacoviello (2005) as testable hypotheses within the VAR.

The DSGE model is driven by output, which is driven by productivity A;, as usually
assumed in real business cycle and DSGE models. Furthermore, the productivity is assumed
to follow an AR(1) process. The model in Iacoviello (2005) is also extended with AR(1)
dynamics in the short-run changes of output, housing prices, inflation and the interest rate.

If we assume that (log of) total factor productivity (TFP), a;, drives the model, we have
the following conceptual MA representation of the DSGE model in Iacoviello (2005):

Yt diq V1t

qt di2 (Y
= 4 [at] +

Tt 13 V3t

Ry di4 V4t

where vy = Du_1 + & and & = [€14, 82,4, &34, Eae) 18 IN(0, V') and uncorrelated with e; which
is the error term in the AR(1) process of total factor productivity a;. The stochastic trend
represented by productivity should not affect inflation and the nominal interest rate since
they are assumed to be stationary. If a; is a unit root process, both output and housing
prices should be equally affected by the TFP stochastic trend, since output affects housing
prices. This is shown in the log-linear housing demand equation below:

Gt = YeGer1 + (1 = ve) (YVigr — Xew1 — he) — mBrrg — (1 — mB)Aépy1 — de(AR) — BARY, )

where 7r; denotes the real interest rate, where we see that output (which is driven by TFP)
is the only factor driving housing prices.

This implies that we should have di; = di3. Furthermore, we should have that di3 =
d14 = 0 since inflation and the nominal interest rate is assumed stationary. This implies rank
r =3 as in (8), which yields

Yt dq U1
qa | _ |di V2t
¢ o 0 [at] * V3t
Ry 0 V4t

The MA representation implies the three stationary relations outlined in (8) and it is also
implied that the cumulated shocks to output is the common driving trend of the model.

When the inflation and the nominal interest rate are assumed to be non-stationary, and
we have one stationary relationship between all of the four variables as in (9), we have
three common driving trends. This implies that not only total factor productivity drives the
model, but also two other factors. The theoretical model includes four exogenous shocks,
related to productivity, prices (cost-push shock), housing preferences and a shock process for
the central bank’s interest rate rule. The shock to the nominal interest rate is assumed to be
of mean zero, while the three remaining shocks are expressed as stochastic AR(1) processes



in Tacoviello (2005). If we assume that the three AR(1) processes may contain a unit root,
the MA representation can be expressed as

Yt dir do1 dai V1

Ut
g | _ |diz dyz ds %u; 4 [Y2 (11)
T di3 daz da3 "

Sug] [
2
Ry dig dog d3g V4

where the first stochastic trend is assumed to be the shocks to total factor productivity
> w1, = at. For ¢4 — y: to be stationary, we need to have di1 = di2, do1 = d22 and d3; = d32
such that the stochastic trends feeds into y; and ¢; equally. Imposing the restriction for the
Fisher relationship to hold, the stochastic trends should feed equally into 7; and r¢, such that
we need d13 = d14, d23 = d24 and d33 = d34.

The third interpretation of the theoretical model is given by (10). This suggests two
common driving trends and the following MA representation:

Yt di1  do vyt
q | _ |diz da [Z ul,i:| 4| e
| |diz doz| [ DS uay v3e |’
Ry dig doy V4t

where d11 = d12, d21 = d22, d13 = d14 and d23 = d24 in order for long—run homogeneity
between output and house prices and the Fisher relationship to hold. Shocks to TFP and
inflation may be the two driving trends of this model.

3 Statistical model

In order to make this paper closely linked to the model in Iacoviello (2005), I will use the
same data set over the same sample (1974Q1 to 2003Q2) as he does. The only exception is
that I instead of using real house prices and real GDP filtered via a band-pass filter removing
frequencies above 32 quarters, will use the log of the variables without filtering. I will also
not multiply inflation and the interest rate by 100. The variables (except the interest rate)
are seasonally adjusted.

The VAR model estimated in Iacoviello (2005) also includes one lag of the log of the
Commodity Research Bureau (CRB) price index, a constant, a time trend, and a shift dummy
that is zero until 1979Q4 and unity thereafter. I will also include these in the estimated CVAR
model.

3.1 Specification of the VAR model

The common trends (or MA) representation e.g. in (2.3) was specified for a VAR(1) model.
However, two lags are needed in order to in order to get an estimated model without auto-
correlation (tests will be shown below). The VAR(2) model may then be expressed in error
correction form (ECM) as®

4Note the change of ordering of the variables in z; in the estimated model compared to the ordering in
the MA representation of the theoretical model. This is done to use similar ordering as in the estimated VAR
model in Iacoviello (2005).



Azy = wAW; + (D11 — wl21)Az—1 + oy [8, Bo, B1] Ze—1 + PDy + 70 + it + & (12)

where @} = [Ry, 7, G, yt), 21—y = [zt—1, 1, 1), 2z = |2, W3], T} = [T11,T21], & = [aq, 2],
£ = €1t — wea, € = [e,ea), W = mCRB;—1 and & ~ IN(0,Q) for t = 1,...,T and
x_1,xg is given. This implies that the log of the CRB spot price index is included as a weakly
exogenous variable.

The variables are y; which is log of real GDP (nominal GDP deflated by the GDP deflator),
q: which is log of real house prices (Conventional Mortgage Home Price Index - CMHPI by
Freddie Mac deflated by the GDP deflator), m; which is log difference of the GDP deflator, R;
which is the Fed Funds rate calculated as the average value in the first month of each quarter
as well as log of the CRP spot price index. The sample is chosen to be similar to the sample
used in the estimation in Iacoviello (2005), i.e. 1974Q1 to 2003Q2. D, is a vector of dummy
variables, o is a constant and pp is a coefficient for the trend ¢.

In order to prevent quadratic trends in (12), the trend component needs to be restricted
to the cointegration relations such that 81 # 0 and 3 = 0. This enables the cointegration
space to include time as a trend-stationary variable such that unknown exogenous growth
(e.g. technical progress) may be accounted for (Harris and Sollis, 2003, p. 133). The constant
term needs to be unrestricted in order to allow for a constant term in the equations describing
the slope of the linear trends in the data (Juselius, 2006). Including the trend is in line with
the estimated VAR in Iacoviello (2005), although the theoretical model as shown in the MA
representation in e.g. (2.3) suggests that the trend should not be included in the cointegrating
relations since the trend of y; and ¢; should cancel. We may therefore expect to be able to
exclude the trend after estimating the unrestricted model.

3.2 Institutional events

By using no variables representing institutional events (which may be results of interventions,
reforms, etc.) except the shift dummy for 1979Q4 and thereafter, the model is misspecified.
This is explicitly shown by the non-normal residuals in the VAR model. By including dummy
variables for the periods with large residuals (which should correspond to periods with in-
stitutional events), we shuold be able to have a well-specified VAR model, even though the
theoretical model does not take these events into account.

Multivariate tests (p-values underneath test values)

Residual autocorrelation LM(1) 2(16) = 3(3.3%5
0.00

Residual autocorrelation LM(2) x2(16) = 525.28)0
0.000

Test for normality 2(8) = 177.267
(0.000)

Test for ARCH LM(1) x2(100) = 2?7.70)0
0.000

Table 1: Misspecification tests for the full period.

In order to get a well-specified model which includes no autocorrelation and normality®
we need to add dummy variables for 19 periods according to Autometrics’ (Doornik, 2006)

®Although the model contains autoregressional conditional heteroskedasticity (ARCH), the VAR results
should be robust to moderate ARCH effects (Rahbek et al., 2002).



large outlier detection, which should account for institutional events. These are listed in table
2. Table 3 shows that the model is well specified when these dummy variables are included.

Dummy variable F(4,83) p-value || Dummy variable F(4,83) p-value
Dp1974Q3 16.86 0.00 Dp1980Q3 16.05 0.00
Dp1975Q1 2.14 0.00 Dp1980Q4 11.37 0.00
Dp1975Q2 1.57 0.19 Dp1981Q1 30.86 0.00
Dtr1975Q3 6.79 0.00 Dp1981Q3 13.50 0.00
Dp1976Q1 4.97 0.00 Dp1982QQ2 10.87 0.00
Dp1976Q3 3.59 0.01 Dp1982Q3 3.27 0.02
Dp1977Q2 8.55 0.00 Dp1983Q1 1.83 0.13
Dpl1977Q4 4.93 0.00 Dp2000Q1 1.73 0.15
Dp1978Q2 10.10 0.00 Dp2000Q2 2.18 0.08
Dp1980Q2 21.85  0.00

Table 2: F-tests on the dummy variables. ”Dp” indicates a permanent innovation and ”Dtr”
a transitory innovation for the mentioned and the preceding period.

Multivariate tests (p-values underneath test values)

Residual autocorrelation AR 1-5 F(80,250) = (10.%8708)
Test for normality x%(8) = 5.536
(0.699)

Test for ARCH F(84,290) = 1.523

(0.006)

Table 3: Misspecification tests for the full period after adding dummy variables

Even though the estimated VAR is now well-specified as shown in table 3, the number of
dummy variables is quite large. We also see that the vast majority of the dummy variables
belong to the first part of the sample, since almost half of the periods in the sample prior
to 1983 needs to contain a dummy variable. All of the dummy variables may be motivated
by institutional events such as oil crises and large recessions, but it may also be a sign of
missing observable variables. Using the same observables as in Iacoviello (2005) requires
adding the dummy variables in table 2, which is not in line with the theoretical model where
the institutional events are not taken into account.

Following Juselius and Franchi (2007), I split the sample in one period going until 1979Q4
(prior to the second oil crisis) and a second period going from 1981Q2 until the end of
the sample, as well as omitting the period 1980Q1-1981Q1 in order to avoid the outlier
observations corresponding to these periods. Iacoviello (2005) splits the sample in his VAR
estimation with a shift dummy in 1979Q4 such that the sample split done here is also in
line with what Iacoviello (2005) does. However, since the sample split period starting from
the beginning of the sample (1974Q1) going until 1979Q4 is quite short (24 observations), I
choose to only do the estimation for the second split of the sample. Hence, the sample in the
estimated CVAR model in this paper is 1981Q2-2003Q2.

In order to correct for large outliers pertaining to the residuals for the nominal interest rate,
we need to impose dummies for the periods 1981Q4 and 1982Q2 and no other periods which
is in line with the Volker disinflation policy period. This gives a well-specified model with

10



normality, no autocorrelation and no ARCH. The VAR is then not as dependent on dummy
variables, which provides a closer link between the estimated VAR and the theoretical model.

Multivariate tests (p-values underneath test values)

Residual autocorrelation LM(1) x*(16) = 2(84b77i11)6
Residual autocorrelation LM(2) x2(16) = 5%84.0%2)6
Test for normality 2(8) = 12.691
(0.123)
Test for ARCH LM(1) x2(100) = s%gé%%?

Table 4: Misspecification tests for the split sample

3.3 Exclusion

The first hypothesis related to the theoretical model that we would like to test is whether
the trend is excludable from the long run relations. If it is found to be excludable, the model
may be estimated without a trend since the trend will not provide any useful information to
the long-run structure (Juselius, 2006, p. 351). Since all the linear trends in the levels should
cancel, the trend should be excludable from the long-run relations.

r DGF 5% CV. R 7r q y  In(CRB) TREND

1 1 3.841 26.755 27.637 13.920 0.013 5.079 0.814
[0.000]  [0.000]  [0.000]  [0.910] [0.024] [0.367]

2 2 5.991 32.182 48.120 17.215 23.684 8.198 22.929
[0.000]  [0.000]  [0.000]  [0.000] 0.017] 0.000]

3 3 7.815 45.489 65.439 17.226 35.986 9.985 29.744
[0.000]  [0.000]  [0.000]  [0.000] 0.019] 0.000]

Table 5: Test of long-run exclusion from the VAR for various choices of the rank

The results in table 5 (p-values in brackets below test values) show that the trend and
output may be excludable for r = 1 while it is significant for » = 2 and r = 3. This implies
that the trend and output is not needed in the first cointegrating relation but is needed for
the other cointegrating relations, which is in line with the indications from the rank test after
estimating the model without a trend shown in table 8, suggesting that the output and the
linear trend constitutes the second cointegrating relationship. Also, if a variable is found to
be excludable according to this test, it may be a sign of strong multicollinearity with other
variables and it may suggest that some relevant variables are missing from the cointegration
analysis (Dennis et al., 2006, p. 72). The estimated model without a trend shows, according
to the exclusion test shown in table 6, that output may not be excluded from the long-run
relationships. This suggests that there is strong multicollinearity between the linear trend
and the log of real output. According to the theoretical long-run relations, output should be
included and the trend should be excluded, so I choose to keep output when estimating the
long-run relations but restricting the trend to be excluded.
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r DGF 5% C.V. R T q Yy In(CRB)

1 1 3.841 32.288 46.738 15.516 11.491 4.357
[0.000]  [0.000]  [0.000]  [0.001] [0.037]

2 2 5.991 40.610 54.614 15.938 15.117 7.756
[0.000]  [0.000]  [0.000]  [0.001] [0.021]

3 3 7.815 48.573 67.169 19.248 20.864 10.399
[0.000]  [0.000]  [0.000]  [0.000] [0.015]

Table 6: Test of long-run exclusion in model without trend for various choices of the rank

3.4 Rank

The theoretical models in (8), (9) and (10) correspond to different choices of the rank (r = 3,
r = 1 and r = 2 respectively). I will use statistical tests in order to determine the rank
together with these theoretical interpretations. This will pick out one of the three models
pertaining to the three different rank options, which will be used as the relevant model for
the further analysis in the paper.

rop—r A\ p p* Pmax
0 4 0.565 0.000 0.000 | 0.603
1 3 0.402 0.000 0.003 | 0.620
2 2 0.215 0.239 0.568 | 0.891
3 1 0.036 0.947 0.960 | 0.861

Table 7: Determining the rank based on the unrestricted VAR model

The trace test suggests a rank of r = 2 (the row marked r = i tests Hy : r < i) for a
5% significant level, both using the Bartlett corrected test (the column marked p* in table 7
shows the p-value) and the standard trace test (the column marked p in table 7 shows the
p-value). The (modulus of) the largest unrestricted characteristic root for all choices of the
rank suggests a rank of r = 1. Setting r = 3 would leave a root of 0.861 in the model (see the
column marked pp,q, in table 7), which is quite large. Choosing r = 2 would give the larges
root equal to 0.891, and if rank » = 1 the modulus of the largest unrestricted root is as small
as 0.62. The largest unrestricted root should be significantly different from unity in order to
do the various stationarity tests conducted later in the paper, but since we do not know the
standard deviation of the roots, we do not know exactly whether the reported roots suggest
a rank of » = 1. Still, there is a quite small increase in the largest root when going from rank
r = 3 to r = 2 such that we should set the rank to r = 1 if looking at the roots. The column
marked \; shows the estimated eigenvalues, which should be low.

The theoretical model suggest a rank of r = 3 for the scenario in (8), rank r = 2 for (10)
and rank r = 1 for the scenario in (9). This implies that the choice of rank based on the
statistical tests will influence which theoretical scenario we will pursue in the analysis that
follows.

3.4.1 Estimating the model without the trend

Since the theoretical implication suggests that there should be no deterministic trend in the
model, we should try to test for rank using an estimated model where we do not include
the trend. The estimated cointegrated VAR model below will also show that the trend may
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be excludable in the long-run relationships, which also indicates that an estimated model
without a trend could be a good representation of the data. However, the estimated VAR
model in Iacoviello (2005) includes a trend, so I will include the trend in the estimated model
in the analysis below. In order to do a sensitivity analysis regarding finding the rank I will
perform a rank test where the trend is not included in the model. The trace test and the
modulus of the largest unrestricted roots then yields

rop—r A\ p p* Pmax
0 4 0.561 0.000 0.000 | 0.603
1 3 0.229 0.392 0.612 | 0.616
2 2 0.151 0.798 0.923 | 0.856
3 1 0.014 0.999 0.999 | 0.901

Table 8: Determining the rank in model with no trend

The model estimated without a trend suggests a rank of r = 1 both when looking at
the trace test and the modulus of the largest unrestricted root. This may be a sign that the
second cointegrating relationship found by the trace test for the model which included a trend
was a relationship between the trend and output yielding a trend-stationary output gap. The
tests of exclusion shown in table 5 and table 6 also supports this proposition.

3.5 Stationarity

r DGF 5% C.V. R T q Yy

1 3 7.815 48.470 41.265 62.473 31.118
[0.000]  [0.000]  [0.000]  [0.000]

2 2 5.991 24.099 24.879 35.281 3.426
[0.000]  [0.000]  [0.000]  [0.180]

3 1 3.841 0.452 1.318 13.774 1.556
(0502  [0.251)  [0.000]  [0.212]

Table 9: Test of stationarity

r DGF 5% C.V. R T q Yy

1 3 9.488 59.271 52.740 62.648 59.950
[0.000]  [0.000]  [0.000]  [0.000]

2 2 7.815 32.699 31.792 35.331 32.363
(0.000]  [0.000]  [0.000]  [0.000]

3 1 5.991 12,545 11.487 19.386 20.222
[0.002]  [0.003]  [0.000]  [0.000]

Table 10: Test of stationarity in model with excluded trend

The stationarity test in table 9 is a test for trend-stationarity since the trend is included in
the cointegrating relations, while the test in table 10 is for stationarity where the trend is
excluded from the cointegrating relations, conditional on the choice of rank. Since none of
the variables is shown to be stationary, the assumption of stationary inflation and nominal
interest rate for rank r = 3 according to (8) does not seem to hold. The test for trend-
stationarity shows that output, the nominal interest rate and inflation are trend-stationary
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when rank is » = 3. Since housing prices are not trend-stationary while the other variables
are, different trends may drive the financial markets and the real economy. This is evidence
against long-run homogeneity between housing prices and output.

4 Testing the long-run relations

The test and choice of rank above determined the number of unique cointegration vectors
spanning the cointegration space. However, any linear combination of the stationary vectors
is a stationary vector, such that the estimates for any of the columns in the § matrix are not
unique. It is therefore necessary to impose restrictions in order to test if the columns of £
are identified (Harris and Sollis, 2003, p. 143). Since the rank test suggested a rank of r =1,
I will use the theoretical scenario pertaining to (9) and disregard the other scenarios. This
implies one stationary relationship and three common driving trends in the model.

For rank r = 1 in (9), we only have one cointegration vector, which should include the
four endogenous variables, but not the exogenous variable log of the CRB price index or the
trend. There should also be long-run homogeneity between housing prices and output and
between the nominal interest rate and inflation (corresponding to the definition of the real
interest rate according to the Fisher relationship). Jointly imposing these restrictions yields
the results given in table 11.

R T g vy In(erb) Trend

61 2930 —29.30 1 -1 - -
(2.93)  (-2.93)

Test of restricted model: x?(4) = 56.887[0.000]
Test of restricted model, Bartlett corrected: x?(4) = 44.896]0.000]

Table 11: Testing imposed theoretical restrictions

The model after imposing rank » = 1 and the restrictions pertaining to the hypotheses in
(9) yields the long-run relationship for 8’z

Ing =InY; — 29.30(R; — my),

which expresses an inverse demand function for housing that is the only stationary relation
among the variables. However, the hypotheses are rejected when imposed on the cointegration
vector of the estimated model. This is shown in table 11 and figure 1, where we observe a non-
stationary relationship. The upper panel of figure 1 shows the residuals from the estimated
long-run cointegrating relation and the lower panel of figure 1 shows the residuals from the
estimated long-run cointegrating relation corrected for short-run effects.

The only hypothesis not rejected is excluding the trend from the long-run relationship,
which also corresponds to the results from the general test for exclusion above.

The long-run relationship from 3'x;_1 is then given as (with absolute values of t-ratios in
parentheses below the coefficients)

Ing; = 0.693 InY; —10.638 Ry + 45.1667,
(14.975) (7.112) (11.177)

which also shows an inverse demand function for housing, but not with long-run homogeneity
between housing prices and output and the Fisher relationship. Both the GDP deflator and
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log of the CRB price index is significant and included as price measures. This restriction is
not rejected, with the test values and p-values in brackets x?(2) = 5.171[0.075] and for the
Bartlett corrected case x?(2) = 3.988[0.136]. This suggests that there may exist a long-run
relation pertaining to housing demand, but long-run homogeneity between house prices and
output and between the nominal interest rate and inflation does not exist. The cointegrating
relation is shown in figure 2, where there seems to be a stationary relationship.

The financial accelerator (which is one of the key motivations behind the theoretical
model) suggests that increased housing prices should increase aggregate demand which again
should increase housing prices, and so on. This indicates that an increase in housing prices
should have a self-reinforcing effect such that housing prices might increase more than output,
assuming that output growth is limited by increased technology and the housing supply lags
housing demand. This would eventually lead to a demand surplus in the housing market
following the amplifying effects given by increased housing prices. The long-run homogene-
ity between housing prices and output may therefore not be consistent with the financial
accelerator.
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Figure 1: Cointegrating relationship, with restrictions on g
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5 The moving average (MA) representation

The vector error correction model shown in (12) may also be represented by a moving average
structure through the Granger representation theorem (Engle and Granger, 1987) as shown
in theorem 4.2 in Johansen (1995). This results in

t
Ty = CZ (e +UD;)+ C*(L)(et + po + abit + ®Dy) + A, (13)
=1

where 3
C=p(/L(I-T1—T2)B1) " =B1o,

where the values of the parameters in the matrices 5, and o can be calculated from the
estimates of a, 8 and I". The matrix A depends on the initial values and satisfies 3’A = 0. This
moving average representation may be used to analyze the structure of the common stochastic
trends, which represents the pushing forces that create the non-stationary properties of the
data. The unrestricted or restricted estimates of  and S can therefore be used in order to find
the common stochastic trends and their weights. The cointegration analysis will be covered
through restrictions on the g vectors, while the estimate of C' and « will give information
of the estimated common trends. Since the rank is set to » = 1, we have p — r = 3 common
stochastic trends.

The estimated CVAR model with the theoretical restrictions given by (9) imposed, may be
transformed into a common trends representation using the estimated parameters pertaining
to the matrices «, 8 and I". This yields the results for the parameters in (13), given in table
12 which shows the matrices which is relevant for the common trends representation with
t-values in braces below the parameters.
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ér 2r 2, 2,

O¢; 0.0017 0.0016 0.0122 0.0108
a5, 023  1.00 000  0.00
) [0.51]
as —0.04 000 000  1.00
’ [~0.04]
aq 5 —1.61 0.00 1.00 0.00
’ [~1.32]

R s q y
3¢ 0.77 080 1.83  1.01
ﬂA L1 [4.25) [4.78] [1.39] [0.86]

¢ 0.22 0.13 —0.69 2.03
[fL’z [3.14] 197  [-135  [4.49]

¢ 0.05 0.10 2.13 0.55
Pl [0.73] [1.66] [4.33] [1.27]
The C matrix

tr & & 2,

R 0.09 0.77 0.05 0.22
[0.33] [4.25) [0.74] (3.1]
™ 0.02 0.80 0.10 0.13
[0.06] [4.78] [1.66] [1.97]
q —2.97 1.83 2.13 —0.69
[—1.47) [1.39] [4.33] [—1.35]
y —0.74 1.01 0.55 2.03
(—0.41]  [0.86] [1.27] [4.49]

Table 12: Parameters for the MA representation

Using the estimated values, we get the following estimated common trends representation:

[0.77 0.22  0.05]
R [4.25]  [3.14] [0.73]
t 0.80 0.13 010 [> w1,
T | _ (478 197 [1.66] > us;| + stationary and det. components
q 1.83 —0.69 2.13 ’
(139] [-1.35 [4.33]| [D_u3i
v 101 2.03 0.55
[[0.86]  [4.49]  [1.27]]

The stochastic trends may be interpreted as (with t-ratios in brackets below the coeffi-
cients)

Zuu = st + %g% Z{:‘R
Zuzi = Zey — %8;1} ER
D ugi=) eg- [11.%1]253
Disregarding the insignificant variables, we see that the first stochastic trend can be inter-

preted as cumulated shocks to inflation, the second as cumulated shocks to output and the
third as cumulated shocks to housing prices, as the theoretical model may suggest. We may
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therefore write the MA representation as

[0.77 0.22  0.05]
R [4.25]  [3.14]  [0.73]
t 0.80 0.13 0.10| [Yex
T |78 [L97] - [L66] Y&y | + stationary and det. components
@ 1.83 —0.69 2.13
y [1:39] [-1.35] [433]| [D_&q
¢ 1.00 2.03 0.55
L[0.86]  [4.49]  [1.27]]

The nominal interest rate is mainly influenced by cumulated shocks to output and inflation
while inflation is mainly influenced by cumulated shocks to inflation only. This may indicate
non-stationarity of the real interest rate, which rejects the hypothesis pertaining to the second
relation in (10), i.e. the Fisher equation. Housing prices are mainly influenced by cumulated
shocks to itself, and output is influenced by cumulated shocks to itself. This may indicate evi-
dence against a stationary relationship between output and housing prices, since two separate
trends are driving them. We also see that there are few parameter estimates corresponding
to the expected relationships from (11) (d11 = dj9, do1 = dos, d31 = d39, di3 = di4, dog = doy
and d33 = d34).

The estimated C-matrix in table 12 suggests that cumulated empirical shocks to the
nominal interest rate only have transitory effects to the variables of the system since all the
parameters in the first column of the C-matrix are insignificant, which is also suggested by
the theoretical model. It also suggests that cumulated shocks to inflation have permanent
effects on the nominal interest rate and inflation, cumulated shocks to housing prices have
only permanent effects on housing prices and cumulated shocks to GDP have permanent
effects on the nominal interest rate and GDP. The normalization of o/, as shown in table 12
and the interpretation of the three stochastic trends is in line with this.

6 Structural M A model and impulse response functions

We can impose the orthogonality condition on the residuals while separating between r tran-
sitory shocks, u”, and p — r permanent shocks, u”’, and impose exclusion restrictions on the
parameters of the model, in order to identify the structural shocks u; = (u] ,u!) (Juselius,
2006, p. 275) and (Dennis et al., 2006). These structural shocks can then be given an economic
interpretation in order to extend the analysis of the model with impulse response functions
and relate it to the theoretical scenarios.

The MA representation is given by (13). We may relate the VAR residuals &; to the
structural shocks u; by a matrix B such that

uy = Bey & g4 = Bilut,

where the error terms w; are iid Ny(0,1,) (Dennis et al., 2006). By inserting for &; in (13)
using matrix B, we get®

5The weakly exogenous variable In CRB;_1 is excluded here to ease notation.
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t t
2y =CB™ ' (u;) +CY ®D;+ C*(L)(B "uy + po + ®Dy) + A
=1 =1

t t 00
i=1 =1 =0

where C' = CB~! and C*(L) = C*(L)B~'. 1 choose to normalize the transitory shock on the
nominal interest rate, the first permanent shock on inflation, the second permanent shock on
output and the third permanent shock on housing prices. This is in line with the theoretical
model which assumes AR(1) processes for the shocks pertaining to the three latter variables,
while shocks to the nominal interest rate is assumed to be white noise. Results from the
estimated o/, in the MA representation as shown in table 12 also supports this. Additionally,
I restrict the second permanent shock (output) to have no long-run effect on inflation and
the third permanent shock (housing prices) to have no long-run effect on inflation and the
nominal interest rate as shown in (14). This is in line with the theoretical model that suggests
no long-run impact on inflation and the nominal interest rate which is assumed stationary in
the long run.

The (normalized) rotation matrix B determines how the orthogonalized permanent and
transitory shocks are associated with the estimated VAR residuals, and is given by

1.00 0.06 0.07 -0.04
0.02 1.00 0.13 0.16
0.84 —0.49 —-0.62 1.00
—-1.83 —-0.84 1.00 0.54

B:

The structural long-run impact matrix is given by C' = CB~!

0.00 1.02 0.08 0.00
0.00 1.00 0.00 0.00
0.00 2.36 —1.33 1.00 |’
0.00 294 1.00 1.00

C= (14)

where the assumed exclusion restrictions are in bold face and show that shocks to output
should not have long-run effects on inflation and shocks to house prices should not have any
long-run effects on inflation and the nominal interest rate.

The impulse response functions from the structural MA with imposed restrictions on
in line with (9) are shown in figure 3 together with impulse response functions from the
estimated VAR in Iacoviello (2005). The residuals are restricted to be orthogonal.
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Figure 3: Impulse response functions from the structural MA model (solid lines) and from
Tacoviello (2005) (dashed lines) with 90% confidence bands (dotted lines).

The impulse response functions given by the restricted CVAR model represented in a
structural MA form may be compared to the impulse response functions given by the esti-
mated VAR model in Tacoviello (2005). However, all the variables are assumed non-stationary
in the CVAR model such that some shocks need to have permanent effects in order to ”drive”
these variables. The first row in figure 3 shows the transitory shock, which may be interpreted
as a shock to the nominal interest rate. The remaining rows represent the p—r = 3 permanent
shocks. Ordered from top to bottom we may interpret these as shocks to inflation, housing
prices and output. The two different IRF's in figure 3 are comparable with regards to the
interpretation of shocks since I have ordered the IRFs following the structural MA model as
in Tacoviello (2005)".

6.1 Analyzing the impulse response functions

In order to separate between the impulse response functions in Iacoviello (2005) and the
impulse response functions from the structural MA model following the restricted cointegrated
VAR model estimated here, I will calculate two additional sets of impulse response functions,
shown in appendix B in addition to the direct comparison in figure 3.

IRFs using filtered variables instead of unfiltered when estimating the structural MA
model following the CVAR model are shown in figure B.1, which may indicate differences
between the IRF's in figure 3 due to using unfiltered variables. The IRF's using the structural
MA model without imposing restrictions (homogeneity between housing prices and output

"Note that the impulse responses in figure 3 are shown from one period after the impact in order to match
the IRFs shown in Iacoviello (2005)
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and the Fisher equation) on  are shown in figure B.2, and may identify differences in IRF's
due to the imposed theoretical restrictions.

The first line of figure 3 should be interpreted as a transitory contractionary monetary
shock, through an increase in the nominal interest rate R. The immediate effect on the
interest rate itself and on inflation is positive, while housing prices and output reacts with
opposite signs in the VAR in Iacoviello (2005) and in the structural MA model. A reason
for this may be that housing prices and output to a larger extent reacts to the real interest
rate than the nominal such that the size of the effect on inflation following the monetary
policy shock determines whether housing prices and output increase or decrease. When not
imposing the long-run restrictions, both housing prices and output decrease as shown in figure
B.2. The imposed theoretical long-run relations therefore seems to yield effects on housing
prices and output opposite of what we would expect from increasing the interest rate, which
may indicate different effects on the real interest rate.

The shock in line 2 in figure 3 may be interpreted as a positive shock to inflation®. This
yields permanently increased interest rate, housing prices and output in the structural MA
model and a temporary increase in the interest rate together with decreased housing prices
and output in the VAR in lacoviello (2005). Both in the structural MA without long-run
restrictions and in the structural MA using unfiltered variables, housing prices and output
increase as shown in figures B.1 and B.2. The difference (i.e. opposite effects on housing prices
and output) may therefore be because the nominal interest rate increase more than inflation
such that the real interest rate decreases, causing increased output and housing prices. All
of the IRFs in the structural MA models shows a large increase in the nominal interest rate
following the inflationary shock.

Increased housing prices as shown in the third row cause a permanent increase in output,
a transitory increase in the nominal interest rate and a transitory decrease in inflation in
the structural MA model as shown in figure 3. This indicates the presence of the financial
accelerator since increased housing prices cause a permanent increase in output. Inflation
decreases as shown in IRF's from the structural MA models (all versions of it), while the VAR
in Tacoviello (2005) shows increased inflation following increased housing prices. This may
therefore be caused by the identification of the shocks in the structural MA model, especially
since shocks to house prices are restricted not to have any long-run effects on inflation.

The fourth row can be interpreted as shocks to output, i.e. a positive demand shock. In
the unrestricted VAR in Iacoviello (2005), this causes increased housing prices, interest rate,
and inflation. The decrease in housing prices following a permanent positive demand shock in
the structural MA model (all versions of it) is the main difference when compared to the VAR
in Tacoviello (2005). This is opposite of what we would expect from the financial accelerator.
Since the nominal interest rate increases permanently and inflation decreases temporarily in
the structural MA model, the real interest rate will increase permanently. If the negative
effect on housing prices following an increased real interest rate is larger than the positive
effect of increased output, housing prices may decrease. The identification of the shocks in
the structural MA model which imposes no permanent effect on inflation from the demand
shock may be the cause of this. Additionally, the use of filtered variables in the structural
MA model yields increased housing prices in the long run as shown in figure B.2, such that
the use of filtered variables may also affect the results.

The results from the impulse response functions following the structural MA model may

8permanent in the structural MA model and transitory in the VAR in Tacoviello (2005)
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often be hard to explain, so the interpretations here are not necessarily correct. Especially,
since the imposed long-run restrictions are not accepted when imposing them on the CVAR
model, the ’economic labels” imposed on the shocks here may not be correctly connected to the
empirical shocks (Juselius, 2006, p. 286). Imposing that the second permanent shock (labeled
as a positive shock to housing prices and shown in the third row in the figures) should have
no long-run effect on inflation or the nominal interest rate is also perhaps a strong restriction,
since the importance of housing prices which is the label for this shock is then reduced. We
also see that using filtered variables and imposing restrictions on the long-run relations affects
the IRF's. In addition, it seems that the change in the real interest rate following a shock has
a strong effect on output and housing prices, in some cases larger than the effect of the initial
shock.

7 Conclusion

The framework applied in this paper combines the theoretical model and the estimated VAR
in Tacoviello (2005) by imposing restrictions from the theoretical model on the estimated
VAR by using the cointegrated VAR model. Even though there is found evidence for the
financial accelerator in the estimated VAR and the impulse response functions following the
minimum-distance estimation of the theoretical model in Tacoviello (2005), the results from
impulse responses of the theoretically restricted structural VAR estimated here does not show
evidence for this.

Imposing a constant relationship between housing prices and output according to one of
the steady states of the theoretical model implies that an increase in housing prices should
lead to a similar increase in output and vice versa. Looking at the time series for housing
prices and output indicates that this hypothesis does not hold since there has been a much
larger growth in housing prices than output for a large period of time. The theoretical model
also assumes that inflation and the nominal interest rate should separately be stationary, even
though the empirical evidence suggests that these are non-stationary for the sample period the
model is being estimated over. Stationarity between the nominal interest rate and inflation,
pertaining to the Fisher equation, is therefore imposed on the long-run relations here in order
to restrict the real interest rate to be stationary. This seems to be non-stationary as well.

The results following the structural MA model suggests some puzzling results which should
be analyzed carefully. The imposed long-run homogeneity between housing prices and output
and the Fisher equation should impact how the variables respond to various shocks, and
since these imposed restrictions are not accepted, the interpretation of the results becomes
less realistic. Additionally, by using the Band-pass filter on output and real housing prices
separately, the potential difference in the trends driving these which is not in line with the
long-run homogeneity between housing prices and output may be removed. This is also
indicated by the rejection of trend-stationarity of housing prices but acceptance for all the
other variables. However, the effect of the real interest rate should also be considered, and
the results following the structural MA model may indicate that the real interest rate has a
large impact on the economy such that changes in the real interest rate following a shock may
alter the initial effect of the shock.
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A The data series
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Figure A.1: Log of Real GDP (nominal GPD deflated by the GDP deflator).
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Figure A.2: Log of real house prices (deflated by the GPD deflator) from the Conventional
Mortgage Home Price Index (CMHPI) by Freddie Mac.
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Figure A.3: Log difference of the GDP deflator, measuring inflation.
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Figure A.4: The Fed Funds rate, calculated as the average value in the first month of each
quarter.
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B Impulse response functions
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Figure B.1: Impulse responses from the structural MA model (solid lines) and from the
estimated structural MA model using filtered variables and long-run restrictions (dashed
lines). Size of impacts are scaled in order to ease comparisons.
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Figure B.2: Impulse responses from the structural MA model (solid lines) and from the
estimated structural MA model using unfiltered variables and no long-run restrictions (dashed
lines). Size of impacts are scaled in order to ease comparisons.
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